Downscaling SMOS-derived soil moisture products

M. Piles1,2, A. Camps1,3, M. Vall-llossera1,3, I. Corbella1,3, A. Monerris1,3, J. Martínez2,3, R. Acevo1, X. Bosch1, N. Sánchez4, C. Pérez-Gutiérrez4, G. Baroncini-Turricchia4, J. Martínez-Fernández4

1Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Campus Nord, E-08034 Barcelona, Spain
2Institut de Ciències del Mar (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, E-08003 Barcelona, Spain
3SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity
4CIALE, Universidad de Salamanca. Duero 12, E-37185 Villamayor, Spain

Introduction

• SMOS spatial resolution is adequate for global studies, to improve our understanding of water and energy fluxes between atmosphere, surface & subsurface
• However, it is insufficient for regional applications requiring higher spatial resolution (1-10 km):
 - Better land & water resources management
 - Improve agricultural productivity
 - Enhance weather and climate forecast skills
 - More effective flood/drought/landslides mitigation
• A downscaling approach to improve the spatial resolution of SMOS soil moisture estimates with the use of higher resolution visible/infrared satellite data is proposed
• The algorithm is based on the so-called “universal triangle” concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and land surface temperature (Ts), to soil moisture
• It was first tested at the REMEDHUS site (Spain), and later to real SMOS data over Australia and Spain