Radar Altimetry Tutorial

December 2006

V. Rosmorduc, J. Benveniste, O. Lauret, M. Milagro, N. Picot

J. Benveniste, N. Picot, Editors
Radar Altimetry Tutorial

Predicting climate, monitoring mean sea level, river and lake levels, global warming, El Niño and La Niña events, marine currents and ocean circulation, tides, geoid estimates, wind, wave and marine meteorology models, ice sheet topography and sea ice extent, etc. Radar altimetry can provide such a wealth of information -- and more -- from its measurements.

This Radar Altimetry Tutorial describes applications, examples (data use cases) and techniques, including standard data processing, as well as the various satellite missions that have carried, are carrying or will carry a radar altimeter onboard, plus a range of altimetry products (data, software and documentation).

A Basic Radar Altimetry Toolbox is also available. This is a collection of tools and documents designed to facilitate the use of radar altimetry data. It can read most distributed radar altimetry data, from ERS-1 & 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat to the future Cryosat missions, and can perform processing and data editing, extraction of statistics, and visualisation of results.

Acknowledgments & contributors

This tutorial was produced by CLS under contract to ESA and CNES.

Citation

If using this tutorial, please cite:

Authors

V. Rosmorduc (CLS), J. Benveniste (ESA), O. Lauret (Silogic), M. Milagro (SERCO), N. Picot (CNES)

Editors

J. Benveniste (ESA), N. Picot (CNES)

Scientific committee

G. Goni (NOAA, USA), S. Laxon (UCL, UK), J.M. Lefèvre (Météo France, France), C. Maes (IRD, New Caledonia), F. Rémy (Legos/CNRS, France), J. Tournadre (Ifremer, France)

Acknowledgments

Thanks to M. Ablain, L. Amarouche, J. Dorandeu, J.P. Dumont, P. Escudier, S. Guinehut, F. Lefèvre, F. Mercier, P. Schaeffer, P. Thibaut, O.Z. Zanifé (CLS) for inputs and advices
Contents

- Introduction

- Overview

1. Altimetry applications
 - 1.1. Geodesy & geophysics
 - 1.1.1. Bathymetry
 - 1.1.2. Geodesy
 - 1.1.3. Other geophysical applications
 - 1.1.4. Tsunami
 - 1.2. Ocean
 - 1.2.1. Large-scale circulation
 - 1.2.2. Ocean currents and eddies
 - 1.2.3. Operational oceanography
 - 1.2.4. Tides
 - 1.2.5. Mean Sea Level rise and the Greenhouse effect
 - 1.3. Ice
 - 1.3.1. Ice sheets
 - 1.3.2. Sea ice
 - 1.4. Climate
 - 1.4.1. El Niño - Southern Oscillation (ENSO)
 - 1.4.2. North Atlantic Oscillation (NAO)
 - 1.4.3. Decadal oscillations
 - 1.4.4. Seasons
 - 1.5. Atmosphere, wind & waves
 - 1.5.1. Wind & waves
 - 1.5.2. Cyclones, hurricanes and typhoons
 - 1.5.3. Rain
 - 1.6. Hydrology & land
 - 1.6.1. Lake level
 - 1.6.2. Land
 - 1.6.3. River level
 - 1.7. Coastal

2. Data use cases
 - 2.1. Altimetry data processing for mesoscale studies
 - 2.2. Western boundary currents
 - 2.3. Temporal variations of the Amazon basin
 - 2.4. El Niño and ocean planetary waves
 - 2.5. Seasonal distribution of Significant Wave Height

3. Altimetry
 - 3.1. How it works
 - 3.1.1. Basic Principle
 - 3.1.2. From Radar pulse to the altimetric measurements
 - 3.1.3. Frequencies used, and their impacts
 - 3.1.4. Multi-mission combinations
3.2. Data flow
 ■ 3.2.1. Data acquisition
 ■ 3.2.2. Data processing
 ■ 3.2.3. Data qualification

3.3. Future technology improvements
 ■ 3.3.1. Ka-band
 ■ 3.3.2. Constellations
 ■ 3.3.3. Interferometers
 ■ 3.3.4. GNSS

4. Altimetry missions
 ● 4.1. Past missions
 ■ 4.1.1. Skylab
 ■ 4.1.2. GEOS 3
 ■ 4.1.3. Seasat
 ■ 4.1.4. Geosat
 ■ 4.1.5. ERS-1
 ■ 4.1.6. Topex/Poseidon
 ● 4.2. Current missions
 ■ 4.2.1. ERS-2
 ■ 4.2.2. GFO
 ■ 4.2.3. Jason-1
 ■ 4.2.4. Envisat
 ● 4.3. Future missions
 ■ 4.3.1. Jason-2
 ■ 4.3.2. Cryosat
 ■ 4.3.3. (AltiKa)
 ■ 4.3.4. NPOESS
 ■ 4.3.5. Sentinel 3

5. Product information
 ● 5.1. Product information
 ● 5.2. Toolbox

6. FAQs
 ● 6.1. Applications
 ● 6.2. Altimetry
 ● 6.3. Toolbox

Glossary
Tutorial overview

This Radar altimetry tutorial is organised into six main chapters:

1. **Applications**
 This chapter describes the main applications of radar altimetry, both current and in development, and is organised according to field of study.

2. **Data use cases**
 This chapter gives some practical examples of the applications of altimetry data. The type of data to use, the methodology and the main computations are detailed, as well as how to work with data using the Basic Radar Altimetry Toolbox.

3. **Altimetry**
 This chapter contains background information about altimetry techniques, how data are measured, processed and qualified, as well as the future technology developments being studied.

4. **Altimetry missions**
 This chapter describes the past, present and future altimetry satellites, with details about the altimetry-related instruments onboard, their orbits and ground segments. This chapter describes the past, current and future altimetry satellites, with details on the altimetry-related instruments onboard, the orbit and ground segment.

5. **Product information**
 This chapter covers altimetry products (software and documentation as well as data). It also gives access to the Basic Radar Altimetry Toolbox.

6. **FAQs**
 This chapter contains questions asked about the tutorial and the toolbox, applications, altimetry and products.

In general, the deeper you go into the sub-sections, the more technical the information becomes.

This document is mainly aimed at **newcomers to altimetry**. For this particular audience, we suggest beginning with a specific field of interest (Geodesy & geophysics, Ocean, Ice, Climate, Atmosphere, wind & waves, Hydrology & land, Coastal), then having a look at the corresponding use cases, if any. The 'Altimetry' section provides more technical information, but for an initial approach you can focus on the section headers, where an overview is given (e.g. How altimetry works : basics).

A **contents** gives a general view of the Tutorial. This can be used as a doorway for advanced and expert users, enabling them to go directly to the technical information.
1. Altimetry applications

A wealth of applications are possible using radar altimetry measurements, involving most geoscience fields and practised by more than a thousand teams of users around the world. From the 'historical' applications (geodesy, general ocean circulation) to the developing ones (solid Earth and coastal applications, etc) and the ones that have become classic (ocean variability, ice topography, hydrology), altimetry has shown over and over that it is a very productive technique.

- Geodesy & geophysics
- Ocean
- Ice
- Climate
- Atmosphere, wind & waves
- Hydrology & land
- Coastal
1.1. Geodesy & geophysics

Geophysics is the study of the substances that make up the Earth and the physical processes occurring on, in and above it. Information derived from altimetry data can be used to study the Earth’s shape and size, gravity anomalies (geodesy), seafloor relief (bathymetry), tectonic plate motion and rifts (geophysics), etc. Although often linked to plate tectonics, tsunamis are very different, transient phenomena. However, their impact on the sea surface can be seen by altimeters in some cases, thus helping the study of their propagation.

- Bathymetry
- Geodesy
- Other geophysical applications
- Tsunami

Further information:
1.1.1. Bathymetry estimate from altimetry

Dense satellite altimeter measurements can be used in combination with sparse measurements of seafloor depth to construct a uniform resolution map of the seafloor topography. These maps do not have sufficient accuracy and resolution to be used for assessing navigational hazards, but they are useful for such diverse applications as locating obstructions/constrictions to the major ocean currents and shallow seamounts where fish and lobster are abundant. Detailed bathymetry also reveals plate boundaries and oceanic plateaus.

A detailed knowledge of topography is fundamental to the understanding of most Earth processes. In the oceans, detailed bathymetry is essential for understanding physical oceanography, biology and marine geology. Currents and tides are controlled by the overall shapes of the ocean basins, as well as by the smaller, sharp ocean ridges and seamounts. Sea life is abundant where rapid changes in ocean depth deflect nutrient-rich water toward the surface. Because erosion and sedimentation rates are low in the deep oceans, detailed bathymetry also reveals mantle convection patterns, plate boundaries, the cooling/subsidence of the oceanic lithosphere, oceanic plateaus and the distribution of off-ridge volcanoes.

Since it is impossible to map the topography of the ocean basins directly from Space, most seafloor mapping is a tedious process that is carried out by research vessels equipped with echo sounders. However, completely mapping the ocean basins at a horizontal resolution of 100 m would take about 125 ship-years of survey time using the latest technology, with highly non-uniform data. Thus, until recently, our knowledge of the seafloor topography was poor.

Radar altimeters aboard the ERS-1 and Geosat spacecraft have surveyed the marine gravity field over nearly all of the world's oceans with high accuracy and moderate spatial resolution. In March 1995, ERS-1 completed its dense (~8 km track spacing at the equator) mapping of sea surface topography between the latitudes of 81.5° North and South. These data have been combined and processed to form a global marine geoid or gravity grid [Cazenave et al., 1996; Sandwell and Smith, 1997]. In the wavelength band 15 to 200 km, gravity anomaly variations are highly correlated with seafloor topography and thus, in principle, can be used to recover topography.
Gravity anomalies (left), computed from altimetry, and predicted topography (right) deduced from these gravity anomalies plus in situ measurements.
(Credits NOAA/Scripps Institution of Oceanography)

The basic theory for predicting seafloor topography from satellite altimeter measurements is summarised in a paper by Dixon et al. [1983]. The conceptual approach uses the sparse depth soundings to constrain the long-wavelength depth while the shorter-wavelength topography is predicted from the downward-continued satellite gravity measurements [Smith and Sandwell, 1994]. There are a number of complications that require careful treatment, e.g.:

- computing bathymetry from gravity anomalies is only possible over a limited wavelength band,
- longer wavelengths in this band are highly dependent on the elastic thickness of the lithosphere and/or crustal thickness,
- sediments favour filling bathymetric lows and can eventually completely bury the pre-existing basement topography.

References:
- Smith, W.H.F., and D.T. Sandwell, Bathymetric prediction from dense satellite altimetry and sparse

Further information:
- Measured and estimated seafloor topography (UCSD, USA)
1.1.2. Geodesy

Geodesy is the science of the Earth's shape and size. Altimetry makes it possible to compute Mean Sea Surface; such a surface includes the geoid, i.e. the shape of the sea surface, assuming a complete absence of any perturbing forces (tides, winds, currents, etc.). The geoid reflects the Earth's gravitational field. It varies in height by as much as 100 metres over distances of several thousand kilometres due to uneven mass distribution within the planet's crust, mantle and core. Other less pronounced irregularities are also visible over smaller distances. These mostly reflect the ocean bottom topography.

![Mean Sea Surface](image)

Mean Sea Surface, representing the sea level resulting from constant phenomena, computed from 10 years of altimetry data. This Mean Sea Surface is shaped by permanent ocean currents and, above all, by the gravity field. Differences below the surface of the Earth (for example, variations in magma temperature) can generate sea level variations of over 100 metres between two ocean regions thousands of kilometres apart. At smaller scales (a few kilometres), we can also observe on this surface (highlighted here so as to be visible) the influence of ocean floor topography (see bathymetry) which causes variations of several metres at the ocean surface.

(Credits CLS)

According to the laws of physics, if we set aside any perturbing forces (tides, winds, currents, etc.), the surface of the ocean becomes an equipotential surface of the earth's gravity field. Basically this means that if we could place balls all over the surface of the ocean, none of the balls would roll down the hills of this surface because they would all be on the same "level" (i.e. at the same gravity) and subsequently, that the waters of the currents would not flow due to geoid height variations. This equipotential surface deviates by up to 100 metres from the reference ellipsoid, the ideal shape which fits the rotating Earth most closely. These hills and valleys in the ocean's surface are caused by minute variations in the earth's gravitational field. For example the extra gravitational attraction of a massive mountain on the ocean floor attracts water towards it causing a local bump in the ocean surface; a 2,000-m-tall undersea volcano causes a bump about 2 m high, with a radius of about 20 km. This bump cannot be seen with the naked eye because the slope of the ocean surface is very low. In practice, altimetry data, collected by different satellites over many years, are combined to achieve high data density and to average out sea surface disturbing factors such as waves, winds, tides, and ocean variability. The only other component of mean sea surface that is not the geoid is then the static currents (mean dynamic topography), which have to be explained using different methods and then subtracted (see Altimetry Basic Principles, Large-scale ocean circulation, Applications).

Long wavelengths geoid undulations

The greatest geoid heights and those most visible on a map, reflect deeply-buried density variations.
Gravity anomalies

In order to enhance small-scale features, the high-precision geoid can be converted into a gravity anomaly. Gravity anomaly computations are quite complex, based on laws of physics, geometry and statistics (e. g. see [Sandwell and Smith, 1997]).

References:

Further information:
1.1.3. Other geophysical applications

Geophysics is the study of the substances that make up the Earth and the physical processes occurring on, in and above it. Information derived from altimetry data can be used to study tectonic plate motion, rifts, etc.

Plate Tectonics

Gravity anomalies (top) in the North Atlantic measured in milligals (1 mGal = 10^-5 m/s^2). Since gravity depends on distribution and density of material, features such as the Mid-Atlantic Ridge and fracture zones show up clearly. (Credits Legos)

Further information:
1.1.4. Tsunamis

Tsunamis are waves triggered by the vertical deformation of the ocean bottom, caused by submarine earthquakes or landslides. They lead to waves crossing the oceans at high speed (around 800 km/h), and a potentially enormous quantity of water flooding the coasts when these waves come to shore. Theoretically, sea level anomalies observed by altimetry should reflect these waves. However, observation is difficult, since the additional height is one of the signals of ocean variability. Studying the differences between the few altimetric observations and the tsunami propagation models should enable the scientific community to enhance their understanding of such phenomenon and to fine-tune the models. It is clear that only a multidisciplinary, multi-technique study can grasp all the forces at work here (geophysical, hydrodynamic, energetic etc.).

Until the Indian Ocean tsunami on 26 December 2004, tsunami observations by satellite altimeters had been relatively insignificant. Studies carried out in the past [Okal et al., 1999] show that TOPEX was the only altimeter to detect a tsunami caused by an earthquake in Nicaragua in 1992. The signal was not clearly observed because of its weak amplitude, close to 8 cm, and the great ocean variability in this area. The probability of a satellite altimeter observing a tsunami is low because it requires that the satellite overflies the tsunami wave almost immediately after it originates, due to the tsunami’s great propagation speed (about 800 km/h in an ocean 5,000m deep). Tsunami signals in the open ocean are also quite weak.

Altimeter Sea Level Anomalies account for many different ocean signals such as large-scale and mesoscale ocean variability. These signals considerably limit our ability to detect tsunami waves, or can at least significantly modify the observed characteristics. Most of these signals can be removed, however, using an ocean variability mapping technique. Note that this is possible only because at the time of the December 2006 tsunami, we had very good space/time sampling of the ocean with four altimeters. Such a configuration is required to describe the ocean’s mesoscale variability and thus to extract the signals generated by the tsunami from the background ocean variability signals.

It must be noted that satellite altimetry is not sufficient for the early detection and warning of tsunamis. Even
with a four altimeter configuration (as it was the case during the 26 December 2004 Indian Ocean tsunami), the probability of observing a tsunami just after it is triggered remains low [Okal et al., 1999]. This also poses some specific data acquisition and processing issues (data processing time would hardly be compatible with the time required to issue an alert). The unique contribution of satellite altimetry is to better understand and improve the modelling of tsunami propagation and dissipation. In particular, reported observations from the 26 December 2004 Indian Ocean tsunami have been used to refine the initial displacement conditions due to the earthquake, so that observations match model outputs [Ablain, 2006].

Further information:
1.2. Ocean applications

The ocean is the surface studied by the majority of altimetry applications, and some missions are even optimised for it. Ultimate applications include oceanography itself, as well as the implications of ocean movements on climate (and vice-versa, the effects of climate change on the ocean).

Ocean currents can raise sea surface height by up to a metre higher than the surrounding area. Currents can therefore be mapped by measuring height variations. Satellite altimetry, supplying continuous worldwide observations, has been increasing our knowledge of ocean circulation since the 1978 Seasat mission. The ocean is also a turbulent environment -- especially so in the major current areas --, where 'mesoscale' eddies (i.e. eddies measuring about 50-500 km across) are generated and move. The goal of operational oceanography is to describe in real-time and to forecast such ocean dynamics, with altimetry supplying the most important data for assimilation.

The tides, another ocean phenomenon seen by altimetry, can now be gauged to within 2 cm, thanks largely to altimetry. This has helped to improve our understanding of Earth-Moon interactions such as the Moon’s impact on the length of the day on Earth, and has given some insight into one of the driving forces of the Earth’s climate system.

Last, but not least, by tracking changes in sea level, altimetry helps us to monitor mean sea level, its time variations and geographical patterns. Many studies are ongoing, in the context of research into the greenhouse effect.

- Large-scale circulation
- Ocean currents and eddies
- Operational oceanography
- Tides
- Mean Sea Level rise and the Greenhouse effect
1.2.1. Large-scale ocean circulation

A view of the global ocean circulation shows currents swirling around the hills and valleys at the sea surface. In the Northern Hemisphere, currents flow around hills in a clockwise direction and in an anticlockwise direction (the opposite occurs in the Southern Hemisphere) around valleys. These currents form gyres on either side of the equator. Planetary waves are other large-scale phenomena that are less easy to see on an instantaneous map, but nonetheless they too have a global impact.

Currents

The major ocean currents can raise sea surface height by up to a metre higher than the surrounding area. The deviation of the ocean surface elevation from the geoid is called ocean surface topography. This is used to calculate the speed and direction of ocean currents -- provided that the geoid is understood independently with sufficient accuracy, which, since the CHAMP and GRACE gravimetry satellites were launched, is beginning to be the case (this understanding should be enhanced further with the planned GOCE mission). Even without this knowledge, studies of the large-scale variations have been undertaken since the beginning of altimetry. Among other things, year-to-year variations in the extent of the Gulf Stream and Kuroshio currents have been observed, that can be correlated with changes in upper ocean heat content. These have an impact on ocean-atmosphere heat exchanges, with implications for decadal climate variations.

- Data use case: Western boundary currents: The Gulf Stream and its seasonal variations

Kelvin and Rossby waves

Though the major currents are very important, the ocean and climate are also influenced by phenomena that are more difficult to see. 'Planetary' waves cross the oceans along parallels and interact with general ocean circulation. These are either Rossby waves, which travel from east to west, or Kelvin waves which move in the opposite direction. They intensify currents such as the Gulf Stream or the Kuroshio. In addition, they may be reflected off the continents and return in the opposite direction, or follow coastlines. These waves and their reflections play a key role, in particular in the El Niño phenomenon.

The existence of Rossby waves had been predicted theoretically for over 50 years, but they could not be observed until the advent of high-precision altimetry satellites. Their small amplitude (a few centimetres), extent (an ocean basin) and velocity (a few kilometres per day, depending on the latitude - they take several years to cross the Pacific Ocean at the 30° latitude) made it nearly impossible to observe them using in situ measurements. Now that we know what we are looking for (they can be seen most clearly as a series of straight lines in longitude-time diagrams), we can also detect them in other kinds of satellite measurements. High-precision altimetry, however, remains the best way of detecting these waves.
Comparison of longitude-time diagrams from three different sensors (altimeter, water colour, surface temperature).

(Credits Southampton Oceanography Center)

Further information:
- Cipollini, P., P.G. Challenor, D. Cromwell, I.S. Robinson, G.D. Quartly, How satellites have improved our knowledge of planetary waves in the oceans, 15 years of progress in radar altimetry Symposium, Venice, Italy, 2006
1.2.2. Ocean currents and eddies: mesoscale ocean applications

Ocean currents are sometimes compared to 'sea highways', because ships follow their flow to gain speed. But this picture is not wholly accurate. In fact, ocean currents are more like secondary roads branching off into narrow country roads and lanes, winding their way around hills and natural obstacles. The main flow of these currents is often disturbed by eddies that form at their edge. So the ocean is really more like a vast, slowly swirling whirlpool bath than a swimming pool divided into perfectly straight lanes.

![Standard deviation computed from 12 years of altimetry data (all available satellites during the 1992-2004 period)](credit: Aviso)

The ocean is a turbulent environment. The most energetic kind of ocean circulation variability is associated with so-called mesoscale variability (eddies, meandering currents or fronts, squirts and filaments), i.e. features on a 50-500 km scale, lasting 10-100 days, with currents of a few kilometres per hour. The energy of these mesoscale processes generally exceeds that of the mean flow by an order of magnitude or more. They also transport heat, salt, carbon and nutrients as they propagate through the ocean. Ocean eddies play an important role in ocean circulation and heat transport, as well as in the ocean's biogeochemical cycles. The ability to monitor them from space has applications in navigation, offshore operations, fisheries, hurricane and climate forecasting, among others.

Before the advent of satellite observations, this turbulence was mostly underestimated, or even ignored. For improved monitoring of such features, altimetry needs merged data from at least two satellites (see How altimetry works: Multiple satellite for high-precision altimetry).

- Data use case: Ocean eddies as seen by satellite altimetry: Kuroshio current

Further information:
1.2.3. Operational oceanography

Satellite observations provide a unique opportunity to monitor changes in the ocean in real time, accurately, on a global scale, and with high resolution. As only the properties of the sea surface can be observed from Space, data assimilation systems are needed to improve the consistency between satellite data and model simulations, to dynamically extrapolate and interpolate measurements scattered in space/time, and to better exploit the results of observations.

Ocean models are based on the laws of physics applied to a fluid (Newton's laws, along with thermodynamics). Data assimilation is a procedure that combines actual observations with models. This combination aims to better estimate and describe the state of a dynamic system -- the ocean. Estimates of this dynamic system are improved by correcting model errors with the observations on the one hand, and by synthesizing observations with the model on the other.

The vast majority of assimilation methods used in oceanography and meteorology are based on minimising the squared difference between the observations and their modelled equivalents. Several different approaches are used to resolve this problem: they are divided into so-called sequential and variational methods (such as 3D-Var, 4D-Var). Sequential methods, which are more basic but also more robust, enable the density of a water column to be modified in the model in order to correspond to the satellite-observed sea level height. These calculations are performed sequentially and the results are compared with observations at regular intervals, thus allowing the model to be corrected. Other more advanced techniques are costlier and more difficult to adjust due to their complexity. They include the variational method which aims to correct the initial conditions of the numerical model in order to obtain results that best fit the observations made throughout the period studied. At any point in time, therefore, the correction takes into account past and future observations. This technique is useful for controlling large-scale changes in ocean circulation and monitoring phenomena such as equatorial waves.
Sea level anomalies on 8 January 2003 from the medium-resolution Mercator model (1/3°), with assimilation of in situ SST measurements and (left) Jason-1 data only, (right) all available altimetry satellite data (Jason-1, ERS-2 and GFO). More detail can be seen in the right-hand figure.

(Credits Mercator Ocean)

Ocean models have now improved to the point where they are used to simulate and study the actual circulation of the ocean.

Further information:
1.2.4. Tides

Tides have been studied for longer than most other ocean phenomena; however, for most of this time, the only measurements possible were those made by tide gauges on the coasts, mostly in harbours, which were thus subject to local factors, the geometry of the coasts and, in particular, the bathymetry. Now, satellite altimetry provides measurements of sea surface heights in the open ocean accurate to 2-3 centimetres that are assimilated into mathematical tide prediction models. This has helped to improve tide models (now accurate to within 2 cm in the open ocean), and increase our understanding of Earth-Moon interactions such as the Moon’s impact on the length of the day on Earth. In return, tide models are used to remove tidal effects from altimetry data.

The combined attraction of the Moon and the Sun generates tides on Earth. Calculating their effects is not as easy as it might seem, as the distance and inclination of the Sun and Moon with respect to Earth, and with respect to each other, have to be factored in. The shape and size of ocean basins is another factor that makes predicting tides such a complex matter. In order to calculate tides, they have to be broken down into sinusoidal waves of given periods, each of which varies in amplitude and represents one component of the problem. Thus, one of the waves, called M2, is due to the attraction of a ‘virtual’ Moon placed on a perfectly circular orbit in the Earth's equatorial plane. It has two high and two low tides per day (semi-diurnal wave). The K1 wave, with a diurnal period, reflects declination variations of the Moon and Sun. The amplitude of the tide at a given time and place is the sum of all these sinusoidal waves. In certain areas, a hundred of these waves have to be added together to obtain a precise forecast.

One of the questions that needs solving when using altimetry in tidal studies is the issue of aliasing. Depending on the satellite's repeat period, some tidal constituents are always seen at the same point in their cycle, and thus have not been accurately measured (this is especially true for sun-synchronous satellites, which see semi-diurnal tidal constituents as stationary), whereas other tidal constituents with periods shorter than the satellite’s are measured with sparse sampling with respect to their duration, and are thus difficult to piece together.

In addition to their direct effects on maritime and coastal activities, tides appear to have a less well-known impact on the Earth’s climate. This discovery, which is based on almost ten years of highly precise altimetry data, has led to a new understanding of the way in which the Moon influences our planet. Ocean waters are stratified according to their density. The different layers mix with difficulty. However the tidal currents coming...
into contact with the relief of the ocean bottom (even if this is very deep) create waves which are propagated at the interface between two layers of different density (internal waves). It is currently thought that this mechanism contributes more than half of the vertical mixing of water masses. This mixing is fundamental to large-scale ocean circulation (thermohaline circulation) which enables the redistribution of heat from the equator to the poles.

Energy flow of the semi-diurnal, lunar tidal wave (M2). The illustration shows the displacement of energy from areas in which it was generated towards dissipation areas. It has been demonstrated, for instance, that the energy dissipated on the Patagonian shelf (to the east of South America), one of the areas where tides are highest, comes from the Pacific and that 40% of the total energy contributed by the Earth/Moon system to ocean tides, is dissipated in the North Atlantic.

(Credits NASA/GSFC)

References:
- Eanes, R. J. and S. V. Bettadpur, The CSR3.0 global ocean tide model, Austin, Cent. for Space Res. Univ. of Tex, 1996.

Further information:
1.2.5. Mean Sea Level

Sea level rise and the Greenhouse effect

A large proportion of the world’s population lives in coastal areas vulnerable to rising sea levels. Permanent submersion, repeated flooding, faster erosion of cliffs and beaches, increasingly saline estuaries and salt contamination of groundwater are just some of the possible consequences of a rise in sea level in low-lying regions.

As global temperatures rise, mean sea level is rising with them: all the indicators point to an increase in the mean level of the world’s oceans. As far as we can tell from a few isolated measurements taken around 1900, this rise has been continuing for at least a century. Today, thanks to the global coverage of altimetry satellites, estimates of the rise in sea level have improved in accuracy. With time series containing fifteen years of data, we can begin to observe trends and attempt to mitigate their effects.

Altimetry provides a powerful tool for determining the extent and causes of sea level change. Since early 1993, Topex/Poseidon has been measuring global sea level variations with great accuracy, complemented and followed by Envisat and Jason-1. This long dataset indicates that, in terms of the global mean, sea level
is presently rising at a significantly higher rate than the mean rate recorded by tide gauges for the past five or more decades (of the order of 1.8 +/- 0.3 mm/yr). The higher rate observed during the 1990s may indicate that sea level rise is accelerating due to greater land ice melting and/or increased ocean warming. Moreover, we cannot exclude the possibility that it at least partly reflects the decadal variability of the combined change in thermal and ocean mass. Longer datasets are needed to discriminate between the different hypotheses, and to study this question further.

Estimating mean sea level change and its sources is currently a very active research topic. Many teams are participating in fine-tuning the computations and studying the causes.

Further information:
- http://sealevel.colorado.edu/ (University of Colorado at Boulder, USA)
1.3. Ice: ice sheets and sea ice

Altimetry measurements can also be used to determine sea ice thickness and glacier topography. Ice motion and spread are major indices of global climate change: ice, including sea ice, plays an active role in the climate due to the strong feedback induced by its high albedo, whereas continental ice mostly acts as a huge reserve of fresh water (77% of the Earth’s fresh water is frozen in Greenland and Antarctica), that could significantly contribute to sea level rise.

The cryosphere plays an important role in moderating the global climate, and as such, the consequences of receding ice cover due to global warming are far-reaching and complex. While evidence suggests that ice sheets are relatively stable, there are indications that rapid changes are occurring around their margins, where the ice reaches the sea: changes that could weaken the ice sheet.

Altimetry is one of the most powerful tools for observing sea ice and ice sheets. For sea ice, altimetry provides a unique way of measuring its thickness. For ice sheets, their topography can be measured by altimeters, at least by those that can reach high latitudes. Moreover, altimeters also provide other parameters such as backscatter coefficient and waveform shape that give information on surface roughness and snow pack characteristics such as stratification or ice grain size. These parameters are related to relevant unknown quantities affecting the climate, such as snow accumulation rate or snow drift caused by wind.

- Ice sheets
- Sea ice

Further information:
- Rémy, F., The new vision of the cryosphere thanks to 15 years of altimetry, 15 years of progress in radar altimetry Symposium, Venice, Italy, 2006
1.3.1. Ice sheets

Altimetry is a powerful tool for measuring both the dynamics and mass balance of ice sheets. Continental ice has an impact on sea level: if both of the major Greenland and Antarctica ice sheets were to melt, the sea level would rise by about 80 m.

Topography is one of the parameters relevant to the processes acting on ice sheets. It contains the signature of the main physical processes (climate and dynamic) that act on an ice sheet on both a small and large scale, and important information about local anomalies or general trend behaviour. Nowadays topography is also an initial condition for studying future evolution. Large-scale topography controls flow direction and its mapping enables the balance velocity to be derived. Moreover, the deformation and sliding velocities depend on the basal shear stress and thus on surface slopes. Accurate information about topography is, therefore, crucial to predicting future evolution and understanding ice dynamics, either by providing an empirical parameterisation of the flow laws or by pointing out unknown physical processes.

Moreover, altimeters also provide other parameters such as backscatter coefficient and waveform shape that give information on surface roughness and snow pack characteristics, from the global to the kilometre scale. Since ERS-1 was launched, with an orbit as high as 82°N and S, our vision of the ice sheets has been radically transformed. This long series, with ERS-2 and Envisat following ERS-1, has made it possible to discern changes in the shape and volume of both ice sheets, Greenland and Antarctica, which are related to climate change. Moreover, from April 1994 to March 1995, ERS-1 was placed on a geodetic orbit (two shifted cycles with a 168-day repeat) so that the topography of both ice sheets could be mapped with a resolution of 2 km. This precise topography has led to the detection of subglacial lakes, subglacial hydrological networks, outlet glacier anomalies, etc.

The 15 years of data from ERS-1, ERS-2 and Envisat have also made it possible to map the ice mass balance. Results show that the Greenland ice sheet is thinning at low altitudes while thickening at its centre. A simultaneous increase in accumulation rate at high altitude and snow melting at low altitude explains this pattern and strongly agrees with the theoretical behaviour of snow when confronted with climate change. On average therefore, the Greenland ice sheet seems to be thickening slightly at a rate corresponding to a decrease of 0.03 mm/yr in sea level. On the contrary, the Antarctica ice sheet is found to be stable, although local increases or decreases can be observed. For instance, in the western part a large sector is found to be thinning, whereas a few sectors in the eastern part are found to be thickening.

Further information:
Rémy, F., The new vision of the cryosphere thanks to 15 years of altimetry, 15 years of progress in radar altimetry Symposium, Venice, Italy, 2006
1.3.2. Sea ice

Sea ice is one of the least-known parameters needed for climate modelling. While its extent and age can be measured by other sensors, altimetry is the only one providing sea ice thickness.

Sea ice is seawater that has frozen. It contains little salt as most of it is rejected as it forms. Sea ice covers the Arctic Ocean more or less permanently above the latitude of about 75°N. This permanent ice cap is composed of pack ice, which is kept in continuous motion by the wind, tides and ocean currents. It must be noted that, since sea ice is floating, if it were to melt it would not cause the sea level to rise directly. However, due to its high albedo, ice directly affects the global Earth energy budget by reflecting about 80% of incident sunlight back out to Space. Thus, once formed, ice tends to be maintained. However, if ice cover were to decrease, less solar radiation would be reflected away from the surface of the Earth - causing the ice to absorb more heat and consequently melt faster still. The thickness of Arctic sea ice also plays a central role in the polar climate as it moderates heat exchange by insulating the ocean from the cold polar atmosphere. Moreover, as sea ice forms, the salinity, and therefore the density, of the upper ocean increases. This density increase causes the surface waters to sink - in essence acting as a pump, driving cold, deep ocean currents from the polar regions towards the equator.

In the Arctic, sea ice typically covers about 14 to 16 million square kilometres at its maximum extent in late winter, and 7 to 9 million km2 at its minimum seasonal extent in late summer. In the Antarctic, sea ice at its maximum covers 17 to 20 million square kilometres and only about 3 to 4 million square kilometres at its minimum. Observations show that the mean Arctic ice extent is decreasing at a rate of about 3% per decade while Antarctic ice extent is quite stable. The maximal loss in the Arctic occurs in September, at the end of the summer, and can reach 8%.

Regional sea ice models have been successfully developed over the last decades. However, given the impact that sea ice has on the climate, it is essential to acquire more comprehensive data on sea ice thickness, in order to improve sea ice models for their implementation in general climate studies.

One method of computing sea ice thickness is based on the difference in height between sea and ice surfaces, allowing this parameter to be acquired from altimetry. A careful analysis of individual echoes can distinguish between those backscattered from the open ocean, new ice or multi-year ice. The difference between the elevation of the echoes from snow/sea ice and open water then gives the elevation of the ice above the ocean; the ice thickness can thus be deduced from this.

Further information:
1.4. Climate

The ocean is permanently in motion and exchanges large quantities of heat with the atmosphere, thus playing a major role in climate. It is responsible for around half of poleward heat transport. From the seasonal to the decadal, or even the centennial timeframe, the ocean’s influence upon the atmosphere is one of the keys to climate forecasting, including events such as El Niño.

Altimetry is one of the most important tools for monitoring ocean dynamics, and as such is a source of vital data for including in forecasting models of ocean-atmosphere coupled events such as El Niño, monsoons, the North Atlantic Oscillation or decadal oscillations. Seasonal climate forecasting is also beginning to show interesting results. The oceans are in turn affected by climate variations, as the sea level rises and falls in response to their fluctuations.

- El Niño - Southern Oscillation (ENSO)
- North Atlantic Oscillation (NAO)
- Decadal oscillations
- Seasons
- Mean Sea Level rise and the Greenhouse effect ("Ocean" application)
1.4.1. El Niño - Southern Oscillation (ENSO)

Greater knowledge of ocean circulation is enabling us to better understand and predict the climate, especially natural catastrophes such as El Niño. This phenomenon, caused by the arrival of anomalous warm water on the coast of Peru, brings severe weather patterns such as drought, flooding and cyclones. It is now possible to predict El Niño from ocean data.

For centuries, Peruvian fishermen have feared the sea warming known as El Niño, which every few years around Christmas, drastically reduces their fishing catches. These El Niño events are part of a broader disruption to normal weather patterns which causes drought, flooding and hurricanes around the world. The 1997-98 event gave scientists a chance to analyse the complex relationship between the ocean and the atmosphere. The key to maximising the opportunity was the satellite altimetry missions. Altimetry data are vital for the early detection, analysis and close monitoring of large-scale tropical climate anomalies, in order to predict when and how events will develop and, ultimately, to anticipate and mitigate their impacts.

Ocean circulation in the tropics is closely related to changes in the trade winds. There is a strong seasonal cycle in the significant ocean circulation parameters: temperature, density and dynamic topography. In the equatorial Pacific, the trade winds usually blow westward, pushing surface waters and creating a build-up of warm waters at the western end of the basin. At the end of the year, when the trade winds decrease, the trend reverses and warm waters start to move eastward. Some years, the trade winds are so weak that this eastward current becomes very strong and crosses the Pacific basin in a few weeks. Heat transfers between ocean and atmosphere are considerable and lead to devastating precipitations and storms when reaching South America. This is "El Niño" which has global repercussions on the climate.
Because the tropical ocean can be regarded as consisting of two different layers, sea level is a good indicator of the upper layer's heat content. Hence the suitability of using altimetry measurements for studying the exchange of warm water in the tropical Pacific Ocean.

Data use case:
- **El Niño and ocean planetary waves**

References:

Further information:
1.4.2. North Atlantic Oscillation (NAO)

One of the Atlantic's most remarkable recurring atmospheric phenomena makes its presence felt in winter. Called the North Atlantic Oscillation (NAO), it is driven by pressure differences between a high-pressure system over the Azores and a low-pressure system over Iceland, which interacts with the ocean.

The weather over the Atlantic exhibits trends that recur over the years in close step with the ocean. From North America to Siberia, regions bordering the Atlantic are exposed in turn to rain or drought, cold or mild temperatures, and strong winds or dead calm. In winter, two air masses influence atmospheric circulation over the North Atlantic: a depression to the north around Iceland, and an anticyclone to the south around the Azores. Their intensity shapes weather conditions on the shores of the ocean. Pressure variations in these air masses, and the associated ocean variations that interact with them, are the driving forces behind the North Atlantic Oscillation (NAO). There are two extremes or 'phases' of the NAO: a positive phase, when the 'Azores high' is especially high and the 'Icelandic low' is lower than normal, and a negative phase, when both are weaker. We have been observing these particular weather variations since the 17th century. But it was only when satellites arrived on the scene that we could begin continuous, long-term monitoring of the oceans and atmosphere to unlock the secrets of the mechanisms that control our weather. Improving our understanding of these variations over periods of ten or more years is essential to reliable climate forecasting. In this respect, the permanent ocean-observing capability afforded by altimetry satellites, in combination with other satellites and in-situ measurements, is a vital aid.

Fluctuations in the North Atlantic Oscillation and the temperature variations that go with it lead to changes in sea level. The ocean reacts to shifts in the prevailing winds, which drive the currents, waves, sea surface temperature, etc. Temperature swings also cause sea surface height to vary. We can observe these variations using altimetry satellites. All these measurements can thus serve as indicators of NAO phases and can be used in climate prediction models.
1.4.3. Decadal oscillations

The El Niño-Southern Oscillation and the North Atlantic Oscillation are by no means unique. Similar phenomena of greater or lesser intensity, varying over periods of several years, can be observed across the oceans of the globe.

Extended time series of satellite data now allow us to study ocean variations over several years. Today, the Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO) are well documented. The next step will be to predict these phenomena. To achieve this goal, we need to gain a better understanding of how they might be interacting and how they are affected by other ocean and atmospheric variations. Continued monitoring by a permanent series of ocean-observing satellites should yield vital clues.
1.4.4. Seasons

Ocean seasons

One of the most surprising discoveries made by altimeters is the amplitude of seasonal signals. The mean variation in sea level is in fact more than 10 centimetres between cold and warm ocean seasons, and even more in enclosed or semi-enclosed seas. This seasonal cycle is roughly two months out of step with the calendar seasons, due to the inertia of the oceans in propagating heat or cold to deeper waters.

Seasonal forecasting

One of the major questions today in the ocean/atmosphere and climate fields concerns the production of reliable seasonal climate predictions. Even if it will probably be impossible to predict the weather on a given day more than (at the utmost) two weeks in advance, the ocean's influence on the atmosphere should enable the trends of the approaching seasons to be forecasted. This is already providing interesting results in tropical areas. Temperate areas are more difficult, but several projects are underway, which are aiming to predict what the weather will be like next summer - drier or wetter, hotter or colder than the average.
1.5. Atmosphere, wind & waves

Studying atmospheric effects, marine meteorology and the impact of ocean features and conditions on the weather are all possible using altimetry data.

Altimetry data are used to compute wave height and wind velocity. Today, altimetry makes it possible to access such information in near-real time (within 3 to 48 hours) and to improve weather forecasting models by assimilating these data in them. Moreover, with 15 years of altimetry data, wave height and wind speed statistics, and seasonal and interannual variations can be used to study the whole ocean, or regional areas, for purposes such as offshore industries or navigation.

- Data use case: Seasonal distribution of Significant Wave Height

Using altimetry to study hurricanes is not limited to measuring the very high waves and strong winds, and assimilating them real-time in some forecasting models. It can also help identify the warm features that can cause these storms to intensify. Thus sea surface height anomalies can be used as proxies of the warm currents that provide the hurricanes with their energy source.

Another application of altimetry linked to atmospheric phenomena is the use of dual-frequency altimeters to acquire rain rates over the entire ocean, where there are very few meteorological stations.

- Wind & waves
- Cyclones, hurricanes and typhoons
- Rain
1.5.1. Wind & waves as seen by altimetry

Altimeter data are used to compute wave height and wind velocity. The shape and intensity of the reflected radar signal depends on the sea state: a calm sea sends the signal back almost perfectly, like a flat mirror, whereas a rough sea scatters and deforms it (see How altimetry works: waveforms over the ocean).

Fishermen and other seafarers have an interest in knowing about ocean wave heights and wind velocities. Today, altimetry makes it possible to access such information in near-real time (within 3 to 48 hours) and to improve weather forecasting models. Altimetry cannot supply wave heights for any given location every quarter of an hour - at least not without many, many more satellites, but it is a good technique for identifying trends and computing climatologies, thus giving us information about seasonal and interannual variations, as well as about mean and maximum heights, which are of foremost importance to shipbuilding and offshore structures. Now that we have more than 15 years of continuous altimetry data, wave height and wind speed statistics can be used to achieve such goals with high precision. The link between wave heights in the North Atlantic and the NAO index was discovered in this way [Challenor, 2006]. Altimetry can also help study even very transient phenomena such as rogue waves: if no major significant wave height was observed by altimetry in a particular area, but some ships were nevertheless caught by a very high wave, it was likely to have been a rogue wave [Lefèvre, 2006].

Recent studies show that wave periods can be extracted from altimetry measurements [Caires, 2005, Quilfen, 2005]. This is also of major importance to shipbuilding.

Estimates of air-sea transfer rates of radiatively-active gases are needed for studying regional and global gas cycling and climate change. CO₂ absorption increases with sea surface roughness. Absorption of CO₂ by the ocean thus occurs more rapidly in winter (Northern or Southern) [Frew, 2006]. A rough sea surface also causes reflected radar waves to scatter more, meaning that the return signal received by the altimeter is weaker.

Mean wave heights from altimetry off the British Isles in winter (December-February), spring (March-May), summer (June-August) and autumn (September-October) for the years 1993-97. The seasons are very well marked to the west of the Isles, with rough winters (identified by wave heights that can reach 14 metres or even as high as 20 metres), and calm summers. (Credits Southampton Oceanography Centre)

References:

Further information:
1.5.2. Cyclones, hurricanes and typhoons

Tropical cyclones (known as hurricanes in the tropical Atlantic, western Pacific and northern Indian oceans; as typhoons in the eastern Pacific Ocean; and as cyclones in the southern Pacific and Indian oceans) are characterised by very high waves and strong winds, that can be measured by altimeters (provided that the satellite flies close enough to the area affected by the cyclone) and assimilated in real-time in some forecasting models. However, altimetry can also help identify the warm features that can cause these storms to intensify. Thus sea surface height anomalies can be used as proxies of the warm currents, that provide the hurricanes with their energy source.

Cyclone intensification

![Tropical Cyclone Heat Potential field for 12 August 2006. Regions with high (> 50 kJ/cm²) TCHP values are coloured yellow, green and red. (Credits NOAA/AOML)](image)

Some ocean features, such as warm ocean currents and eddies, have been linked to tropical cyclone intensification [Shay et al]. The intensive heating of the ocean's upper centimetres which occurs during the summer months usually makes these extensive reservoirs of high thermal energy invisible when observed using sea surface temperature alone. However, they can easily be observed by altimeters as they are also characterised by greater sea surface heights [Goni et al].

![Tropical Cyclonic Heat Potential computed from altimetry on 28 August 2005, with Hurricane Katrina's trajectory and intensity overlaid. Katrina's intensification seems to coincide with its crossing over the Loop Current. (Credits NOAA/AOML)](image)

Altimetry data in combination with historical hydrographic observations are currently used to estimate synthetic upper ocean temperature profiles. These profiles are then used to compute the integrated vertical temperature from the sea surface down to the 26°C isotherm, the temperature needed to sustain a tropical
cyclone. This quantity is usually referred to as the Hurricane or Tropical Cyclone Heat Potential (TCHP) [Leipper and Volgenau] and represents the amount of heat in the upper ocean available for tropical cyclone intensification.

References

Further information
- Goni, G., P. Black, J. Trinanes, Using satellite altimetry to identify regions of hurricane intensification, Aviso Newsletter, 9, 2003
- http://www.aoml.noaa.gov/phod/cyclone/data/ (NOAA/AOML)

Assimilation in wave models

Altimetry can also play a part in cyclonic event warnings using significant wave height measurements in near-real time (three hours). Once they have been assimilated in sea state forecast models, wave heights from altimetric satellites significantly improve their predictions. With assimilated data from two satellites, Jason-1
(CNES/NASA) and Envisat (ESA), they become even more accurate.

Difference between significant wave height from Météo France's wave model, with and without assimilation of altimetry data (Jason-1 and ERS-2) on 25 September 2004, with Hurricane Jeanne approaching the Florida coasts.

(Credits Météo France)
1.5.3. Rain

To be able to use altimetry measurements, we first have to correct them for the effects of atmospheric water - either rain or vapour. One of the side benefits of altimetry satellites is therefore acquiring information about these meteorological parameters, especially rain, for the entire ocean where there are very few meteorological stations. Such studies enable us to gain a better understanding of rain mechanisms and improve altimeter corrections, thus providing increasingly precise data.

Intense storms developing off the coast of West Africa, as seen by several instruments onboard Envisat: background colour map from the AATSR infrared sensor (initially for measuring sea surface temperature), rain rate from the RA-2 altimeter (black along-track curves) and liquid water content from the MWR radiometer (red along-track curves). The optical depth is a measure of cloud thickness. With all three instruments operating simultaneously, it can be noted that rain occurs where the optical depth is greatest, although the spread of active ‘rain cells’ is narrower than the expanse of dense clouds. (Credits National Oceanography Centre, Southampton/Rutherford Appleton Laboratory)

Each frequency of a dual-frequency altimeter responds differently to rain. This not only makes it possible to accurately detect rain events, but can also be used to yield quantitative values [Tournadre and Morland 1997; Quartly et al. 1999; Chen et al. 1997, 2003; Cailliau and Zlotnicki 2000; McMillan et al. 2002]. However, there are two main problems with these techniques: one is the limited time and space sampling of nadir-pointing instruments, and the other is uncertainty about the height of the melting layer (freezing level) needed to infer the surface rain rate from the measured Ku-band attenuation. Sampling can be enhanced by merging several altimeter measurements, while the microwave radiometer carried by most altimetry satellites enables the latter to be estimated [Tournadre, 2006].
Monthly mean rain rate computed from Topex/Poseidon, for November 1997 (top, at the height of the 1997-1998 El Niño) and November 1999 (bottom, during La Niña). During El Niño rains are more abundant over the warm water pushed toward the South American coasts, whereas during La Niña most rains are over Indonesia and the 'Warm Pool'.

(Credits Ifremer/Cersat)

References

Further information
- Quartly, G.D., Development in rain altimetry from Seasat to Envisat and Jason, 15 years of progress in radar altimetry Symposium, Venice, Italy, 2006
1.6. Hydrology and land applications

The earliest altimetry missions were dedicated to studying the open ocean and some ice measurements. However, as scientists always like to see 'what happens if...', they began looking at the levels of lakes, then rivers as measured by altimeters. Some experiments have also been conducted over solid land, to observe and analyse the signal sent back to the altimeter.

Altimetry has the advantage of taking being able to take global, homogeneous, repeated measurements (thus enabling systematic monitoring to be carried out over several years), unhindered by clouds, night or even vegetation. The measured surface heights are referenced to the same frame. However, it this technique is mainly optimised for the ocean (but although specific land re-tracking can be applied) and takes measurements only at the nadir (i.e. just under below the satellite), with a rather narrow footprint -- and averaging everything in that footprint. Over non-ocean surfaces (wet or dry), the accuracy of the altimetry measurements is can be degraded to by several centimetres or tens of centimetres, mainly because of the heterogeneity of the reflecting surface (a mix of water and emerged lands surfaces). Another important source of error lies in the signal's propagation of the signal through the atmosphere. The satellites' repeat-orbits are rather long (10 to 35 days), which do not fit with real-time monitoring of river or lake level variations (e.g. flood alerts), but agree do work well with seasonal or interannual monitoring.

- **Lake level**
- **Land**
- **River level**

References:

Further information:
- [River and Lake](#) (ESA)
- [Hydrology from satellite altimetry](#) (Legos/CNRS, France)
- [Global Reservoir and lake monitor](#) (U.S. Department of Agriculture, USA)
1.6.1. Lake level monitoring

The level of lakes (such as the American and African Great Lakes, etc) varies through the seasons according to inputs (rain rates, snow melting, etc) and outputs (evaporation, withdrawal, etc), and is thus a very sensitive indicator of regional climate variations. Moreover, the level of enclosed seas (Aral Sea, Caspian Sea, etc) is a major indicator of their good (or bad) health. Altimetry enables us to continually monitor these levels, even in areas which are difficult to access.

Level of the African Great Lakes, as seen by altimeters. (Credits De Montfort University)
Sea level in both basins of the Aral Sea measured by Topex/Poseidon since 1992 (top: North Aral, bottom: South Aral). (Credits CNES/Legos)

Studying altimetry over lakes was first undertaken to validate altimeter measurements, lakes having few dynamics compared to the ocean, and many of them being monitored. Today, a great number of lakes of all sizes are monitored by altimetry. However, in situ data (river runoff, temperature, or precipitation) are still critically needed for studying the evolution of each lake’s water mass balance. 43 lake systems can be observed by Topex/Poseidon or Jason-1, and 215 by ERS-2 or Envisat, out of a total global population of 842 lake systems of more than 100 km².
1.6.2. Land applications

The radars on altimetry satellites, even those optimised for the ocean, continue to emit pulses while flying over land. Reception of the return echoes is more complex, since a field or a forest does not reflect radar pulses as well as water, but some conclusions can still be drawn. The amount of power received after reflection (or more precisely the backscatter coefficient) in itself yields interesting information, since the backscatter coefficient depends on the state of the observed surface, according to whether it is covered by snow, vegetation, flooded areas, etc.

Seasonal anomalies of the backscatter coefficient (return rate of the radar wave to the altimeter antenna) for Topex in Ku band, in winter (top) and summer (bottom) for the first ten years of measurements. Significant variations can be seen, especially in regions which are covered by snow in winter (higher than 55°N), or which have a marked rainy season (equatorial regions, India).

(Credits Legos/CNRS)

Many of the other unique characteristics of radar altimeters over continents are now beginning to be exploited, such as retracked waveform parameters, dual-frequency measurements or synergies with the radiometer that operates simultaneously on most altimeter platforms. These can contribute to monitoring forests, deserts and boreal regions, and their seasonal variations, e.g. information about snow beginning and end dates, and the thickness of snow or plant cover in relation to the season. This new field of altimetry should grow in importance over the next few years, as a complement to other satellite observation techniques.
1.6.3. River monitoring

For certain major rivers and wetlands, hydrological information can often be difficult to obtain due to a region's inaccessibility, the sparse distribution of gauge stations, or the slow dissemination of data. Satellite radar altimeters can potentially monitor height variations of inland waters [Birkett, 1998]. Hydrological products from satellites are unaffected by political and logistical considerations and can provide accurate height measurements not only for lakes but also for large rivers such as the Amazon, which has been a primary target of study over the last ten years.

Water level variations since 1993 in the upper part of the Amazon, from the Topex/Poseidon ground track #063 (left) and Topex/Poseidon ground track #063, over the Amazon and Rio Negro (right)
(Credits: Legos)

Monitoring now covers at least 15 major rivers in all the world’s continents, and a wealth of others are possible, especially with the high-resolution altimetric range (20 Hz) available, or with altimetric waveform-specific retracking. Recent studies using individual echoes ('bursts') should give access to even more new targets. The assimilation of altimetry data in hydrodynamic models should also lead to advances in knowledge and ultimately even in forecasting hydrological systems.

- Data use case: Temporal water surface height variations in enclosed areas: the Amazon Basin
Sample multi-mission time series over the Brahmaputra: red Topex, blue ERS-2, pink Envisat. Circles show all possible targets from ERS-2.
(Credits De Montfort University)

Reference:
1.7. Coastal applications

Many current studies are attempting to enhance the quality of altimetry data close to the coasts. New processing methods and applications can then be developed for littoral and shallow-water regions, some of the most fragile and important areas of the oceans.

The shortage of altimetry data near the coasts (or their inferior quality) is due to several factors:
- the technique itself, since the radar echoes reflected off water, and off a combination of water and land are not identical, and basically only the former undergo processing by the ground segments. Other altimetry satellite measurements also suffer from the same problem, such as those from the radiometer (at a distance of about 50 km from the coast)
- the fact that the basic distributed data (GDR) are mainly average over one second, thus covering about 7 km on the ground (data averaged over 1/20 s do exist, however).
- the computation of some corrections. Tides, in particular, are much more complex near the shores than in the open sea, and require a highly precise knowledge of the coastal geography to be accurately computed. Moreover, rapid variations ("high frequency") must be taken into account in those areas (for the tides as well as for the atmospheric pressure). Wet tropospheric corrections, computed from radiometer measurements are also less precise, or even missing, near the coasts.

For Jason-1 or Topex/Poseidon, areas where radiometer measurements are typically edited out (ie disregarded) by standard processing (in red) and ones where they are retained (in green). The Aegean Sea, in particular, is completely overlooked.

Such studies are leading to advances that will soon make it possible to use altimetry data close to the coasts. With new possibilities such as the use of individual altimetry echoes (as opposed to averaged ones today), we can at last hope for real coastal data.
2. Data use cases

- Altimetry data processing for mesoscale studies: ocean eddies in the Kuroshio current
- Western boundary currents: the Gulf Stream and its seasonal variations
- Temporal water surface height variations in enclosed areas: the Amazon Basin
- Monitoring climate events: El Niño and ocean planetary waves
- Wind & waves: seasonal distribution of Significant Wave Height
2.1 Ocean eddies as seen by satellite altimetry: the Kuroshio current

Altimetry data processing for mesoscale studies.

Mesoscale variability includes eddies, fronts and meanders, and represents a typical space and time scale of 50 km to 500 km and 10 days to 100 days. The Kuroshio is a strong western boundary current in the North Pacific Ocean, similar to the Gulf Stream in the North Atlantic. In this western boundary current, there is considerable mesoscale variability which tends to be dominated by meanders and eddies. Satellite altimetry offers a high-performance technique for studying such phenomena.

Data used

Merged Maps of Sea Level Anomalies (MSLAs) have been used in this study:
- they are already gridded and easy to use, moreover no specific data reprocessing is required here,
- they have been specifically processed for mesoscale studies, i.e. they have been filtered from small-scale signals and long wavelength errors, and have been sub-sampled,
- merged datasets provide a better description of mesoscale activities thanks to improved accuracy.

Methodology

Geographic extraction

Extracting data from MSLAs will greatly simplify our study as the MSLAs are available by from FTP, and our area of interest is defined by the following coordinates: 25°N-40°N, 135°E-180°E (fig 1 & fig 2).

Computation of geostrophic currents

The components of geostrophic currents are deduced from the geostrophic balance hypothesis:

\[u = -\frac{(g/f)x d(SLA)/dy} \]
\[v = \frac{(g/f)x d(SLA)/dx} \]

where \(g \) is gravity and \(f \) the Coriolis parameter. To generate a map of geostrophic currents from SLA fields, algorithms can be based on a centred finite difference method (fig 3).
Maps of Absolute Dynamic Topography (MADT) are obtained using:

\[
\text{MADT} = \text{MSLA} + \text{MDT}
\]

Where MDT is the Mean Dynamic Topography. There are several MDT models, some of which are available on FTP. 'Absolute Dynamic Topography' represents the general ocean dynamics, whereas 'Sea Level Anomalies' focus on its variable component (fig 4).

Western boundary currents such as the Kuroshio convey a lot of energy and generate strong turbulence systems. As while SLAs and geostrophic currents illustrate eddies, EKE (Eddy Kinetic Energy) fields allow enable us to focus on mesoscale variability; statistics are especially necessary to quantify particularly important for quantifying this phenomena.

Next
2.1 Ocean eddies as seen by satellite altimetry: the Kuroshio current

Altimetry data processing for mesoscale studies.

Mesoscale variability in statistics

Computation of EKE

Using geostrophic current components, mesoscale variability can be measured by Eddy Kinetic Energy (EKE, cm²/s²):

\[EKE = \frac{1}{2}(u^2 + v^2) \]

EKE is commonly used as a key indicator of mesoscale variability, as high EKE values correspond to areas of intense activity (fig 5).

Seasonal SLA variations in the Kuroshio system

Several mean seasonal SLAs can be computed, respectively from January to March, April to June, July to September and October to December:

\[\text{mean SLA} = \frac{1}{n} \times (\text{Sum SLA}(t)) \]

This mean SLA represents the mean seasonal status of mesoscale structures in the Kuroshio and enables us to study variations from one period to another (fig 6).

Computation of RMS

Root Mean Square (RMS, fig 7) is given by:

\[\text{RMS} = \sqrt{\frac{\text{Sum SLA}(t)}{n}} \]

Observing mesoscale variability using merged data

Combining data from several altimetry missions improves the description of mesoscale structures. The following figures show the comparison between mean EKE computed with only two altimeters (top figure) and mean EKE obtained with merged data from four altimeters (bottom figure). In areas of strong variability, RMS differences between these two configurations can reach 400 cm²/s².

Pascual et al., 2006
2.2 Western boundary currents: The Gulf Stream and its seasonal variations

Satellite altimetry's contribution to ocean circulation studies.

Ocean circulation at subtropical latitudes is made up of large cells known as anticyclonic gyres; the famous Gulf Stream basically corresponds to the western boundary of the North Atlantic subtropical gyre.

Data used

Merged Maps of Sea Level Anomalies (MSLAs) and Maps of Absolute Dynamic Topography (MADTs) are required:
- both are already gridded and easy to use, moreover no specific data reprocessing is required here,
- both provide their own view of the sea surface current, furthermore their aspects are complementary,
- both have been merged, to provide the most precise dataset available,
- up-to-date ('Upd') data offer better quality for a given date, whereas reference ('Ref') data are more suited to long temporal studies (see the second part: 'Seasonal variations').

Methodology

Temporal extraction

Download up-to-date ("Upd") MSLA and MADT files for November 2, 2005. Then download reference ("Ref") MSLA and MADT files from 2001 to 2005.

Geographic extraction

Our area of interest is defined by the following coordinates: 0°N-50°N, 10°W-80°W.

Four different points of view

Select a date, for example here 2 November 2005 and then plot:

- the Absolute Dynamic Topography map corresponding to your chosen file,
- the Sea Level Anomaly map corresponding to your chosen file,
- the absolute geostrophic velocity map provided with your MADT file,
- the geostrophic velocity anomalies map provided with your MSLA file.
On the MADT map, an area with significant contrasts is visible, where the topography varies by approximately 80 centimetres within quite a short distance, all along what seems to be a front. On the MSLA map, no such frontal area appears, but there are some separated spots in the same place. On the absolute geostrophic velocity map, vector fields plot a continuous structure: vectors join together to form a significant surface current. On the velocity anomalies map, vectors still plot a major current in the North Atlantic Ocean, but with more eddies. These maps correspond with a significant current that flows along the coasts of North America towards European shelves. Eddies in its wake show that a lot of energy seems to be carried by this current.

Previous maps provided just a 'snapshot' of the Gulf Stream system. With a larger time scale, it becomes possible to see that this current does not always flow in the same location, nor with the same intensity: it changes with the seasons, and for seasonal or interannual studies, such maps are obviously not enough to quantify its variability.

Next
2.2 Western boundary currents: The Gulf Stream and its seasonal variations

Satellite altimetry’s contribution to ocean circulation studies.

Does the Gulf Stream vary with the seasons? Or with the years? A few diagrams illustrate a first approach.

The Gulf Stream, season by season

Here we are considering two seasons: autumn (October-November) and Spring (April-May). For each one we:

- compute the temporal average of the absolute dynamic topography all along a cross-section in longitude (70°W),
- plot diagrams showing how these averaged dynamic heights vary with latitude.

Seen in this way, the Gulf Stream appears at approximately 37°N, and seems further north in October (black curves) than in April (red curves), as well as appearing more intense. These differences could mirror a seasonal or inter-annual signal.
fig 3: 2003-2004

fig 4: 2004-2005
2.3 Temporal water surface height variations in enclosed areas: the Amazon Basin

An overview of the potential of satellite altimetry to monitor water level variations of lakes and rivers.

Satellite altimetry was originally intended for open oceans. Monitoring river water levels using altimetry data presents a number of problems:
- the along-track ground resolution: each radar echo is separated by approximately 580 metres, meaning that satellite altimetry is not suited to studying narrow rivers,
- environmental and geophysical corrections models (such as the wet tropospheric correction) have been optimised for open oceans, and may sometimes be nonexistent for continents,
- lastly, radar echoes are subject to perturbations from surrounding terrain (vegetation canopy, topography).

When considering the Amazon basin, we have to distinguish floodplain and wetlands water from the main river.

Data used

For studying water surface heights in the Amazon Basin, we are using altimetry measurements over land with the following parameters: geoid model, dry tropospheric correction, wet tropospheric correction and ionospheric correction.

Range values should preferably be computed from waveforms to obtain improved altimetric datasets: for processing radar echoes, retracking algorithms may be adapted to the ground type under study (this is not the intention of this particular 'Data Use Case').

Here we are using altimetry measurements from Topex/Poseidon Geophysical Data Records (GDR-M). Other suitable products include Envisat or Jason-1 GDRs, which provide altimetry measurements directly over land, unlike the ERS-1 and 2 missions for which only waveforms are available.

There are a few advantages and disadvantages with these datasets:
- The temporal period for Envisat is 35 days, and for Jason-1 is 10 days (like T/P); consequently Envisat's spatial coverage is better than Jason-1,
- on the other hand T/P was launched in 1992, which means that data series as far back as 1992 are available.

It is not possible to use CorSSH (Corrected Sea Surface Height) data here because only valid ocean measurements are available for this product.

Methodology

Initial geographic extraction for GDR-M

The first step is to limit the volume of altimetry data to our area of interest.

We therefore select and extract all the available data in GDR-M within the study area (5°S-10°S, 48°E-80°E), from October 1992 to December 2000 (fig 1).

T/P GDR-M are supplied on DVD-ROM.

Distinguishing dry land data from water
surface data

Waveforms are perturbed by interfering reflections due to water from wetlands, the vegetation canopy, floodplains and the main river. In this case we have to identify water surfaces on the satellite ground track and discriminate rivers from flood areas.

Evaluating the measurement density parameter

Along a given satellite track all valid data are counted for the whole set of cycles over the entire period. For this purpose we consider all available measurements (at 10-day intervals) inside successive circles of a 3 km radius; circles with less than 50% valid measurements are rejected. The result is a 'measurement density' parameter, which is useful as an indicator of the availability of valid measurements (fig 2).

Precise geographic extraction for the Manaus area

We next focus on the T/P ground track near the Rio Negro-Solimoes confluence, where we need to know the location of the land/water boundary as precisely as possible. To do this, we have to locate intersections of T/P ground tracks and shore boundaries. In this case, accurate and 'up-to-date' georeferenced datasets are essential. Information is provided either from satellite images (SPOT for example) or a GIS (fig 3).

We now know:
- the measurement density distribution for each ground track during the period,
- the location of T/P ground tracks, especially in the Rio Negro-Solimoes confluence area, using the most precise georeferenced geographic sources available.

Next
2.3 Temporal water surface height variations in enclosed areas: the Amazon Basin

Methodology

Computing water surface heights

Water level h' is computed from GDR-M using:

$$h' = s - r$$

where s is the satellite’s altitude (orbit) and r the range value.

Subtracting geoid and geophysical effects

Altimetry data must be corrected for geoid and propagation effects as follows:

$$h = h' - g - i - d - w$$

where g is the geoid value, i the ionospheric correction, d the dry tropospheric correction and w the wet tropospheric correction. NB: For T/P GDR-M, the wet tropospheric correction is not available for continents; thus in the present study we are unable to take this parameter into account [de Oliveira Campos et al., 2001]. Note also that depending on the area being studied, the dry tropospheric correction is fairly static, which means that sometimes it is possible to compute water surface heights without applying this correction.

Computing a mean water level

For each ground track, a mean water surface height is computed using

$$h_{mean} = (\text{sum of } h_i)/n$$

where h represents the value corresponding to the index i and n the number of altimetry measurements.

Mean water level variations in Manaus

Data series are shown in the following figures.
Left: Water level time series in the Amazon for T/P track 63 (3.21°S-3.14°S), in metres; dots represent in situ data from the Manau station. Right: Overview of the geographic window showing the stations; the backscatter coefficient and measurement density parameter have been computed along T/P track 63.
2.4 Monitoring El Niño: Rossby and Kelvin waves

Using altimeter data for climate studies.

El Niño is a climatic phenomenon occurring in the Pacific Ocean every two to ten years. During an El Niño event, a few months before Christmas anomalous warm water accumulates off the coast of Peru. The El Niño event that occurred in 1997 was a good example of where satellite altimetry made a major contribution to monitoring such phenomena.

Data used

No particular reprocessing of altimeter data is necessary in this case, so it is possible to use ready-made maps of Sea Level Anomalies. As combined data offer the best quality, and delayed-time the optimal orbit, we have chosen the merged DT-MSLA dataset, up-to-date ('Upd') data for better quality for a given date, and reference ('Ref') data for long temporal studies (see the second part: 'Ocean planetary waves').

Methodology

Temporal extraction

Download MSLAs from 1992 to 2005. This could take some time (!), if necessary you can reduce the data period to 1996-2000. The main advantage of selecting such a long time period is to put the El Niño event into context.

Geographic extraction

Data selection concerns the Pacific Ocean, and specifically the following coordinates:
30°S-30°N, 170°W-120°W (fig 1).

Temporal series of MSLA

- Compute the geographic average for SLAs corresponding to the area defined by (5°S-5°N, 170°W-120°W). The value obtained, for a given time, represents the mean sea level anomaly over the equator in the Pacific Ocean. This averaged SLA shall now be referred to as \(M \).
- Plot the curve \(M=f(t) \) in order to show the temporal variations in \(M \) all along the chosen period.

The diagram shows periodic oscillations in \(M \) and

1997 El Niño

Focusing on 1997 enables us to consider specifically the month of November as an indicator of El Niño's intensity. Using only the fourth MSLA datasets available for November 1997, a new monthly mean map can be plotted (fig 3, simply re-enlarge the selected area to 30°S/30°N). This gives an overview of El Niño's distribution throughout the Equatorial Pacific Ocean during the month of November.

It is now acknowledged that an El Niño event is caused by significant changes in wind stress; it thus provides a good example of existing interactions between ocean and atmosphere. However, sea surface slope changes, in terms of space and time scales, involve planetary waves (ie those with long wavelengths, that can travel thousands of kilometres). These are known as Kelvin waves and Rossby waves.

Next
2.4 Monitoring El Nino: Rossby and Kelvin waves

The Equatorial ocean is an effective wave guide, where waves can propagate within a band a few degrees wide around the equator. The two main equatorial waves are Kelvin waves and Rossby waves.

Kelvin waves

Kelvin waves propagate eastwards in response to wind stress. In the same way as for November, plot SLA maps for December and January. The resulting diagrams show the situation at successive monthly intervals: the maximum SLA values (i.e Kelvin waves) progress towards the South American coast and divide into two poleward Kelvin waves.

Rossby waves

One part of the Kelvin wave is deflected westwards: this is a Rossby wave, which propagates across the rise in thermocline at lower speeds (by a factor of approximately 3) than Kelvin waves. Space and time features of planetary waves suggest another approach to their study, as plotting maps for each month would be ineffective and tedious. Other diagrams, such as Hovmoller diagrams, can be useful.

Hovmoller diagram

In a Hovmoller diagram, SLA variations are plotted for time and longitude at a fixed latitude, which highlights the role of waves. To plot such a diagram on the area (5°N-5°S, 135°E-75°W), select your time period (in the example the datasets go from the beginning of 1996 to the end of 1999), then compute the averaged SLA for latitude. Then plot this mean SLA for longitude, for the whole time period.

On this diagram, SLA appears to be streaked with colours: these straight lines represent ocean waves. The red stretch shows the El Niño event, where maximum values reached 40 centimetres around 125°W at the end of 1997.
Planetary waves transport heat and energy across the oceans, and satellite altimetry allows us to detect them because of the variations in sea level they generate.
2.5 Seasonal distribution of Significant Wave Height

Satellite altimetry's contribution to wave climatology.

The global coverage and continuity made possible by satellite altimetry enables scientists to provide ocean wave climatology and to study large-scale patterns of wave variability. Below is a short example based on one year's satellite altimetry datasets using the Basic Radar Altimetry Toolbox (BRAT).

Data used

We have focused on 2004 and have used gridded Jason-1 Near-Real Time (NRT) Significant Wave Height (SWH) datasets. Merged gridded SWHs (with improved quality) are not included as they have only been available since the end of 2005. It is also possible to use historical along-track SWH datasets and then to grid them.

Methodology

Name the dedicated BRAT workspace you are using for this job. Within this workspace, name your dataset; as the study is based on four seasons, you can for example name your dataset 'winter_swh', 'summer_swh' etc., which will enable you to easily identify the kind of file in your dataset.

Temporal extraction

Download Jason-1 NRT MSWH. The time period ranges from early March 2004 (nrt_mswh_j1_19783.nc.gz) to the end of February 2005 (nrt_mswh_j1_20089.nc.gz).

Geographic extraction

No specific focus here.

Mapping the distribution of SWH

In the 'Operations' menu, name your computation (for example, 'seasonal_mean'), then select your dataset and data. In 'Data mode' keep 'MEAN' selected and select Z=F(X,Y) for a gridded map. Enter your data expression: specify to BRAT that the data field is Grid_0001 and rename it ('MeanSWH'). For the X field the variable is 'Longitude', and for Y it is 'Latitude'. In both X and Y field options, enter 1 as
the step value to obtain a 1°x1° map (which is the original resolution of this NetCDF file). Now your output file is ready to be executed.

In the 'Views' menu, you now only have to name your plot file, give the plot a title, select your NetCDF computed file and click on 'execute' to view it.

Results and comments

The global distribution of significant wave height displays a zonal structure, with a large band of high waves in the Southern Oceans that reaches its maximum around 50°S.

In the Northern Hemisphere's winter, the highest waves are located in the mid-latitudes, both in the central North Atlantic and North Pacific Oceans. In the Northern Hemisphere's summer, high waves disappear in the North while they become stronger and larger in the Southern band.

Spring and autumn maps appear as transitional periods between the two previous ocean states. Note also the signature of the monsoon in the Arabian Sea, where the increasing wave height reaches up to 3 metres in Summer.

Wave climatology suggests possible links between the state of the oceans on inter-annual and seasonal scales (for example, are the wave climates of the North Atlantic and North Pacific connected?). It has also now been proved that North Atlantic wave climatology is linked to North Atlantic Oscillation. Using more than 15 years of altimeter data, this investigation is still ongoing.
3. Altimetry

Altimetry is basically a technique for measuring height. Satellite radar altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Moreover, this measurement yields a wealth of other information that can be used for a wide range of applications.

- How it works
- Data flow
- Future technology improvements

Further information on radar:

- http://www.alphalpha.org/radar/intro_e.html
- http://www.itnu.de/radargrundlagen/index.en.html

Further information on radar remote sensing:

- http://ceos.cnes.fr:8100/cdrom-00b2/astart.htm
3.1. How altimetry works

Altimetry satellites basically determine the distance from the satellite to a target surface by measuring the satellite-to-surface round-trip time of a radar pulse. However, this is not the only measurement made in the process, and a lot of other information can be extracted from altimetry.

The principle is that the altimeter emits a radar wave and analyses the return signal that bounces off the surface. Surface height is the difference between the satellite's position on orbit with respect to an arbitrary reference surface (the Earth's centre or a rough approximation of the Earth's surface: the reference ellipsoid) and the satellite-to-surface range (calculated by measuring the time taken for the signal to make the round trip). Besides surface height, by looking at the return signal's amplitude and waveform, we can also measure wave height and wind speed over the oceans, and more generally, backscatter coefficient and surface roughness for most surfaces off which the signal is reflected.

If the altimeter emits in two frequencies, the comparison between the signals, with respect to the frequencies used, can also generate interesting results (rain rate over the oceans, detection of crevasses over ice shelves, etc).

To obtain measurements accurate to within a few centimetres over a range of several hundred kilometres requires an extremely precise knowledge of the satellite's orbital position. Thus several locating systems are usually carried onboard altimetry satellites. Any interference with the radar signal also needs to be taken into account. Water vapour and electrons in the atmosphere, sea state and a range of other parameters can affect the signal round-trip time, thus distorting range measurements. We can correct for these interference effects on the altimeter signal by measuring them with supporting instruments, or at several different frequencies, or by modelling them.

Altimetry thus requires a lot of information to be taken into account before being able to use the data. Data processing is also a major part of altimetry, producing data of different levels optimised for different uses at the highest levels.

- Basic Principle
- From Radar pulse to altimetry measurements: waveforms
- Frequencies used and their impacts
- Multi-mission combinations

Further information:
3.1.1. Basic Principle

The principle of altimetry
(Credits CNES/D. Ducros)

Satellite-to-surface distance: Range

Radar altimeters on board the satellite transmit signals at high frequencies (over 1,700 pulses per second) to Earth, and receive the echo from the surface (the "waveform"). This is analysed to derive a precise measurement of the time taken to make the round trip between the satellite and the surface. This time measurement, scaled to the speed of light (the speed at which electromagnetic waves travel), yields a range R measurement (see From radar pulse to altimetry measurements for further details).

However, as electromagnetic waves travel through the atmosphere, they can be decelerated by water vapour or ionisation. Once these phenomena have been corrected for, the final range can be estimated with great accuracy (see data processing).

The ultimate aim is to measure surface height relative to a terrestrial reference frame. This requires independent measurements of the satellite’s orbital trajectory, i.e. exact latitude, longitude and altitude coordinates.

Satellite Altitude

The critical orbital parameters for satellite altimeter missions are altitude, inclination and period. The altitude of a satellite depends upon a number of constraints (e.g. inclination, atmospheric drag, gravity forces acting on the satellite, area of the world to be mapped, etc). The period, or 'repeat orbit' is the time needed for the satellite to pass over the same position on the ground, uniformly sampling the Earth's surface. Inclination gives the highest latitude at which the satellite can take measurements.
The altitude of a satellite (S) is the satellite's distance with respect to an arbitrary reference (e.g. the reference ellipsoid, a rough approximation of the Earth's surface). It depends upon a number of constraints (e.g. inclination, atmospheric drag, gravity forces acting on the satellite, area of the world to be mapped, etc). The satellite can be tracked in a number of ways so as to measure its altitude with the greatest possible accuracy and thus determine its precise orbit, accurate to within 1 or 2 cm. The main techniques used are:

- Doppler shift, to accurately determine the satellite's velocity on its orbit, using dynamic orbitography models to deduce the satellite's trajectory relative to Earth (e.g. DORIS, or PRARE instruments),
- GPS or similar systems can also be used,
- laser tracking is also used, often for calibration.

Surface height

The surface height (H), is the satellite's distance at a given instant from the reference surface, so:

\[(\text{corrected}) \text{ Height} = \text{Altitude} - (\text{corrected}) \text{ Range}\.

For the ocean, the sea surface height (or SSH) integrates effects such as:

- " the sea surface height which would exist without any perturbing factors (wind, currents, tides, etc.). This surface, known as the geoid, is determined by gravity variations around the world, which are in turn due to major mass and density differences on the seafloor. For example, a denser rock zone on the seafloor would deform sea level by tens of metres, and be visible as a hill on the geoid.

- The ocean circulation, or dynamic topography, which comprises
 - the permanent stationary component (permanent circulation linked to Earth's rotation, permanent winds, etc.). The mean effect is of the order of one metre.
 - and a highly variable component (due to wind, eddies, seasonal variations, etc.).

To derive the dynamic topography, the easiest way would be to subtract the geoid height from SSH. In practice, mean sea level is subtracted instead, to yields the variable part (sea level anomalies) of the ocean signal.
3.1.2. From radar pulse to altimetry measurements

A radar altimeter measures surface characteristics with a high degree of accuracy. This implies high precision in the radar measurements, and therefore requires performance far greater than a conventional radar, in particular for classic radar range measurements.

The radar altimeter emits a pulse towards the Earth's surface. The time which elapses from the transmission of a pulse to the reception of its echo reflected off the Earth's surface is proportional to the satellite's altitude. The magnitude and shape of the echoes (or waveforms) also contain information about the characteristics of the surface which caused the reflection. The best results are obtained over the ocean, which is spatially homogeneous, and has a surface which conforms with known statistics. Surfaces which are not homogeneous, which contain discontinuities or significant slopes, such as some land surfaces, make accurate interpretation more difficult.

Even in the best case (the ocean), the pulse should last no longer than 70 picoseconds to achieve an accuracy of a few centimetres. Technically, this means that the emission power should be greater than 200 kW, and that the radar will have to switch every few nanoseconds. These problems are solved by full deramp technique, making it possible to use only 5 W for emission.

The range resolution of the altimeter is about half a metre (3.125 ns) but the range measurement performance over the ocean is about one order of magnitude greater than this. This is achieved by fitting the shape of the sampled echo waveform to a model function which represents the form of the echo.

- Full deramp technique, or how to work as if you had a high-power short pulse by using a low-power long modulated pulse.

The return echoes differ with respect to the surface:

- over ocean: Ocean waveforms
- over continental ice: Ice waveforms
- Land waveforms
3.1.2.1. Full-Deramp Technique

The radar emits a modulated chirp \(s(t) \) of duration \(T \) in a frequency-band \(B \) towards the Earth's surface, then, with a delay corresponding to the estimated return time of the emitted chirp, another which is slightly shifted in frequency. By mixing the returning and deramping chirps, the frequency shift can be estimated, which, using Fourier transforms, gives the time delay.

To obtain a resolution of 3.125 ns, pulses of this duration can be used; this is the approach used in laser ranging systems. Maintaining the strength of the return signal requires a certain amount of energy in the pulse, and with such short duration pulses a very high transmit power is required. The approach commonly used in radar systems is to inject a short pulse into a dispersive delay line, which spreads the energy over time, generating a frequency modulated or chirp signal. When the echo is received, the radar passes the signal through an inverse matched filter which compresses the chirp signal back to a short pulse. This technique is called pulse compression. The compressed time resolution is inversely proportional to the chirp bandwidth.

A radar range resolution of 3.125 ns would require a very high radio frequency bandwidth, of the order of several hundred megahertz. To generate chirp signals of this bandwidth, the frequency of the signals from the dispersive delay line has to be multiplied. This entails difficulties in the receiver matched filter as the corresponding frequency division is not possible. Even if such a filter were available, video signal handling at a similar high bandwidth would be necessary.

To circumvent this problem, the full-deramp technique is used in combination with linear FM (Frequency Modulation) pulse compression. The return echo signal consists of many discrete chirps, each reflected from a different facet of the ocean surface, with slightly different delay times. The full-deramp concept consists in mixing this incoming signal with a replica of the transmitted chirp, slightly shifted in frequency. The deramp mixer generates signals which are the frequency difference between its two inputs. As both inputs have the same rate of frequency change, the output frequencies are constant tones. The input signals are linear so there is a mapping of time offset onto frequency offset. As a result, targets with a different range give echoes at different frequencies. Therefore, the range discriminator can be implemented with a bank of contiguous filters. The translation from the time domain to the frequency domain simplifies the signal processing stages as they are able to work with much-reduced bandwidth.
3.1.2.2. Altimetric measurements over the ocean

The basic schematic outlines of a return echo over the ocean are as follows:

Over an ocean surface, the echo waveform has a characteristic shape that can be described analytically (the Brown model). From this shape, six parameters can be deduced, by comparing the real (averaged) waveform with the theoretical curve:

- **epoch at mid-height**: this gives the time delay of the expected return of the radar pulse (estimated by the tracker algorithm) and thus the time the radar pulse took to travel the satellite-surface distance (or 'range') and back again.
- **P: the amplitude of the useful signal.** This amplitude with respect to the emission amplitude gives the backscatter coefficient, sigma0.
- **P_o: thermal noise**
- **leading edge slope**: this can be related to the significant wave height (SWH)
- **skewness**: the leading edge curvature
- **trailing edge slope**: this is linked to any mispointing of the radar antenna (i.e. any deviation from nadir of the radar pointing).

The radar altimeter receives the reflected wave (or echo), which varies in intensity over time. Where the sea surface is flat (a), the reflected wave's amplitude increases sharply from the moment the leading edge of the radar signal strikes the surface. However, in sea swell or rough seas (b), the wave strikes the crest of one wave and then a series of other crests which cause the reflected wave's amplitude to increase more gradually. We can derive ocean wave height from the information in this reflected wave, since the slope of the curve representing its amplitude over time is proportional to...
Example of real Envisat (left) and Topex (right) waveforms over the ocean

References
3.1.2.3. Continental ice waveforms

The echo waveform over ice enable to retrieve several parameters:

- epoch at mid-height: this gives the time delay of the expected return of the radar pulse (estimated by the tracker algorithm), and thus the time the radar pulse took to travel the satellite-surface distance (or 'range') and back again.
- backscatter coefficient, sigma0.
- leading edge amplitude
- leading edge width: this is related to the penetration into the medium and the surface roughness of the target.
- trailing edge slope: this gives information on antenna mispointing, and also on the signal penetration into the medium.

All altimeter data for ice sheets must be post-processed to produce accurate surface elevation measurements. This post-processing is called 'retracking' and is required because the leading edge of the ice-sheet return waveform deviates from the on-board altimeter tracking gate, causing an error in the telemetered range measurement.
3.1.2.4. Altimetric measurements over lands

The parameters extracted from the waveforms over continental surfaces are similar to the ones for ice:

- epoch at mid-height: this gives the time delay of the expected return of the radar pulse (estimated by the tracker algorithm), and thus the time the radar pulse took to travel the satellite-surface distance (or 'range') and back again.
- backscatter coefficient (or sigma0): gives information on the nature of the surface.
- leading edge amplitude.
- leading edge width: this is related to the penetration into the medium and the surface roughness of the target.
- trailing edge slope: this gives information on antenna mispointing, and also on the signal penetration into the medium.

For Ku and S band, the backscatter is low in mountainous regions (e.g. e.g. <7 dB in Ku band, <14 dB in S band) as a direct result of the presence of topographic slopes. For both bands, the backscatter values are high on very flat surfaces, such as deserts, large river basins or wetlands (e.g. >15 dB in Ku band and >20 dB in S band), due to the specularity of the return radar echo.

The leading edge width values are high in desert areas due to the strong penetration of the wave and the dunes generated by the winds. Low values, related to weak penetration, correspond to dense vegetated areas, such as tropical or boreal forests, or to large river basins or flooded regions. In contrast to the backscatter coefficient, the use of only one frequency gives a characteristic signature on continental surfaces, providing good discrimination of forests, deserts, etc.
Examples of real waveforms (from the Topex altimeter), for a river (Amazon) and a desert (Sahara)
3.1.3. Frequencies used & their impacts

Several different frequencies are used for radar altimeters. The choice depends upon regulations, mission objectives and constraints, technical possibilities -- and impossibilities. Each frequency band has its advantages and disadvantages.

![Electromagnetic spectrum with different bands indicated.](Credits ESA)

K_u band (13.6 GHz)

K_u band is the most commonly-used frequency (used for Topex/Poseidon, Jason-1, Envisat, ERS, etc). It is the best compromise between the capabilities of the technology (relating to power emitted), the available bandwidth (determined by international regulations for specific applications), sensitivity to atmospheric perturbations, and perturbation by ionospheric electrons.

C band (5.3 GHz)

C band is known to be more sensitive than Ku to ionospheric perturbation, and less sensitive to the effects of atmospheric liquid water. Its main function is to enable correction of the ionospheric delay in combination with the K_u-band measurements. To obtain the best results, an auxiliary band like this must also be as far as possible from the main one.

S band (3.2 GHz)

S band is also used in combination with the K_u-band measurements, for the same reasons as the C band.

K_a band (35 GHz)

Signal frequencies in the Ka band enable better observation of ice, rain, coastal zones, land masses (forests, etc.) and wave heights. Due to international regulations governing the use of electromagnetic wave bandwidth, a larger bandwidth is available than for other frequencies, thus enabling higher resolution, especially near the coast. It is also better reflected on ice. However, attenuation due to water or water vapour in the troposphere is high, meaning that no measurements are produced when the rain rate is higher than 1.5 mm/h.

Dual-frequency altimeters
Using two frequencies is a way of estimating the content of ionospheric electrons, thus correcting the altimeter range from the delay these electrons induce. Other uses of these two simultaneous measurements can be made, such as estimation of rain rates.
3.1.4. High-precision altimetry with satellites working together

In many ways, the orbit of an altimetry satellite is a compromise. But one point that deserves special attention is getting the right balance between spatial and temporal resolution: a satellite that revisits the same spot frequently covers fewer points than a satellite with a longer orbital cycle. One solution is to operate several satellites together.

Ocean

Topex/Poseidon-ERS and Jason-Envisat are fine examples of how altimetry satellites can operate together. Topex/Poseidon and Jason-1 follow a repeat cycle of ten days designed to monitor ocean variations, so they pass over the same points fairly frequently but their ground tracks are some 315 kilometres apart at the equator - wider than the average span of an ocean eddy. On the other hand, ERS-2 and Envisat only revisit the same point on the globe every 35 days but the maximum distance between two tracks at the equator is just 80 kilometres. Other combinations are possible, but at least two altimetry satellites are required to map the ocean and monitor its movements precisely, particularly at scales of 100 to 300 kilometres (mesoscale). With four altimetry satellites available (Jason-1, Envisat or ERS-2, Topex/Poseidon and GFO), the resolution of sea surface height measurements is greatly enhanced. At least three satellites are needed to observe eddies and mesoscale phenomenon, especially in the Mediterranean.

Buoy trajectory (white line, from 14 to 28 May 2003, from A to B) and merged absolute dynamic topography in the Gulf Stream on 21 May 2003. Left with ‘only’ two satellites, right with four satellites. The left-hand map corresponds more closely to the eddy revealed by the buoy’s path.

(Credits MFS/CLS)
Hydrology

For hydrology applications, more satellites primarily mean that a larger number of lakes and rivers can be observed.

![Number of lakes seen by ERS (or Envisat) (215 lakes of more than 100km2) and Topex/Poseidon (43 lakes) (Credits DMU)](image)

Ice and land

Over ice and land, the main advantage is the denser coverage. On some surfaces, and with some satellites (e.g. Envisat and Cryosat over ice caps), some data combinations are possible.

Further information:
3.2. Data Flow

The mission ground segments are a vital component of satellite operations. They are responsible for turning the satellite telemetry into usable data products. They encompass ground support facilities which control instruments, process data and provide user services and expert altimetry support.

- **Data acquisition**
- **Data processing**
- **Data qualification**

Step 0 – Data acquisition

First of all, the data from the satellites have to be downlinked to the ground stations.

Step 1 – Raw telemetry (level 0) and level 1 data

Raw telemetry downlinked to the ground stations is forwarded to the quality control and processing centres. Telemetry is then processed to obtain level 1 data, i.e., data that are timed and located, expressed in the appropriate units, and checked for quality.

Step 2 – Level 1 data and level 2 geophysical data

Level 1 data are corrected for instrument errors, errors due to atmospheric signal propagation and perturbations caused by surface reflection. Geophysical corrections are then applied (solid earth, ocean and pole tides, etc.). Moreover, **precise orbit determination** (POD) can be performed to provide the highest accuracy.

Step 3 – Data validation and qualification

The geophysical data are validated for quality assurance. Validation involves precise quality controls and monitoring of instrument drift. This step is an integral part of the processing sequence before giving the go-ahead to generate science products and distribute them to users.

Step 4 – Level 3 and level 4 data: "value-added products"

Level 3 data are validated (off-record data are edited), along-track data. Further computation is performed on level 2 geophysical data (e.g. SSH or SLA). There may be cross-calibration between missions. Level 4 are multi-satellite (cross-calibrated), gridded data.

See the various [altimetry missions](#) pages for information about their dedicated ground segments.
3.2.1. Data acquisition

Data acquisition from the different altimetry satellites is performed by each agency. Several ground stations exist around the world (e.g. Kiruna, Sweden for the European Space Agency, Aussaguel, France for CNES, Poker Flats and Wallops for NASA, etc). They collect raw data from the satellites and send them to the control and processing centres.

Altimetry data processing also demands several external datasets, in particular to deal with the corrections required for processing the highest quality data.
3.2.2. Data processing

Transforming raw altimetry data into an easily usable form involves a great deal of data processing.

Numerous elements are included in altimetry data. Some come from the altimeter, some from the other onboard instruments, or other instruments; others from models, or a combination of all the former. Classic altimetry data processing (i.e. mostly dedicated to ocean applications), as performed by the ground segments includes:

- Altimeter measurements
- Orbit Determination
- Geophysical corrections
- Instrumental errors
- Reference surfaces
- Flags
- Retracking
- High-level processing

Further information
3.2.2.1. Altimeter measurements

Altimeter measurements are deduced from the waveforms, i.e. the radar echoes (see How altimetry works for Further details).

Altimetric range

Range is the distance from the satellite's centre of mass to the surface of the Earth, as measured by the altimeters. Thus, the altimeter measurements are referred as 'range' or 'altimeter range', not height. This is the principal measurement made by the radar altimeters. Range is estimated from the echo waveforms as part of the processing known as retracking. This measurement is not the altitude, it is still only a measurement of distance.

If the altimeter is a two-frequency instrument, there will be a range for both frequencies. However, the Ku band range is used for most applications.

Significant Wave Height

Significant wave height is computed from the slope of the return radar pulse (the gradient of the leading edge of the radar echo, known as the leading-edge slope), after reflection on the surface.

If the altimeter is a dual-frequency instrument, there will be a Significant Wave Height computed for both frequencies.

backscatter coefficient (Sigma-naught)

The backscatter coefficient, sigma0, is computed from the power of the altimeter's return pulse.

If the altimeter is a dual-frequency instrument, there will be a backscatter coefficient for both frequencies.

Wind speed

The backscatter coefficient can be related to wind speed. Empirical models have established a relationship between the wind speed, the sea surface backscatter coefficient and significant wave height. Wind speed is calculated from the mathematical relationship with the Ku-band backscatter coefficient and the significant wave height. The wind speed model function is evaluated for 10 metres above the sea surface, and is considered to be accurate to 2 m/s
3.2.2.2. Orbit Determination

The ability to precisely determine a satellite’s position on orbit is a key factor in the quality of altimetry data. Besides measurements acquired by the location systems onboard the satellites, which are cross-calibrated, we now rely on increasingly accurate orbit determination models.

Different products require different levels of accuracy. Data generated within three hours are based on a preliminary orbit from the Diode onboard navigator (DORIS). On the other hand, data generated 30 days post acquisition require the most accurate orbit possible and therefore demand more orbit data and more time for calculations. Expected accuracy on the radial orbit component is 20 cm rms for three-hour data, 2.5 cm rms for three-day data, and 1.5 cm for 30-day data. The ultimate aim is to achieve centimetre accuracy.

To achieve the goal of an orbit error of just one centimetre, we need a detailed knowledge of the satellite and its variations - due to manoeuvres, fuel consumption, solar panel orientation and so on - so that we can precisely model the forces acting on it (attraction, atmospheric drag, etc.). We also need to determine the gravity field very precisely. The geodesy missions in-flight or scheduled for the coming years (Champ, Grace, and Goce) (Champ, Grace, and Goce) will help us to improve our understanding of these factors.

Further information on the Choice of orbit
3.2.2.2.1. Orbit choice

For dedicated missions like Topex/Poseidon and Jason-1, orbit precision is the most important criteria. A high-altitude orbit is chosen to attenuate the effects of the Earth's gravity potential, which are not known with great accuracy for lower orbits. The orbit must not be too close to the poles, because the Earth's gravity potential is also less well understood there. A high revisit capability is in order, to enable ocean signals to be observed. And being able to overfly any absolute calibration sites is also an advantage.

For multi-instrument missions like ERS and Envisat, the compromise must take into account any other intended observations (ice, in particular). Conversely, the higher the orbit, the more power will be needed for the radar emission, in order to get back a strong enough signal, and the more vulnerable it will be to solar winds and cosmic particles. Lastly, to observe as much ocean as possible, an orbit close to the poles will be required.

The inclination of a satellite's orbit is the angular distance of the orbital plane with respect to the Earth's equatorial plane. An inclination of, e.g., 90 degrees indicates a polar orbit (this is the case with ESA's Earth-observing Envisat satellite), in which the satellite passes nearly above both poles of the planet on each revolution. An inclination of 66 degrees, like the CNES/NASA Topex/Poseidon satellite, implies that the orbits sample from 66° North to 66° South, so as to cover most of the world's oceans. There are different types of orbits: sun-synchronous, geosynchronous, geostationary, prograde, retrograde, etc. A sun-synchronous orbit (also called a heliosynchronous orbit) such as Envisat's combines altitude and inclination in such a way that the satellite passes over any given point of the Earth's surface at the same local solar time. Envisat, for instance, crosses the equator fourteen times a day, always at 10:00 local time. This is achieved by having the orbital plane of the satellite's orbit precess (rotate) approximately one degree eastward each day, to keep pace with the Earth's revolution around the sun. With a sun-synchronous orbit, observation of the ground is improved as the surface is always illuminated at the same Sun angle when viewed from the satellite. Sun-synchronous satellite orbits are retrograde (they orbit the Earth in an opposite direction to the Earth's spin rotation). However, as 24 hours is the period of some tidal constituents, these will thus always be observed at the same stage of their cycle. Topex/Poseidon, in constrast, has a non-sun-synchronous and prograde orbit and a repeat period of 9.916 days (i.e. the satellite passes vertically over the same location, to within 1 km, every ten days). Envisat's repeat cycle is 35 days. A satellite can be accurately tracked in a number of ways. The DORIS system on board Topex/Poseidon and Envisat, for instance, uses a worldwide network of ground beacons, transmitting to the satellite. It was developed by CNES. DORIS uses the Doppler shift on the beacon signals to accurately determine the velocity of the satellite on its orbit, and dynamic orbitography models to deduce the satellite's trajectory relative to Earth.

Orbit selection

The factors to be considered for selecting the orbit for each instrument include:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Influence Factors</th>
<th>Orbital Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>observation frequency</td>
<td>swath width; revisit time</td>
<td>altitude</td>
</tr>
<tr>
<td>global access</td>
<td>maximum latitude; spacing between ground-tracks</td>
<td>inclination, altitude</td>
</tr>
<tr>
<td>regular ground pattern</td>
<td>synchronous or drifting orbit</td>
<td>altitude</td>
</tr>
<tr>
<td>regular illumination conditions</td>
<td>sun-synchronism</td>
<td>inclination and altitude</td>
</tr>
<tr>
<td>aliasing of solar tides</td>
<td>sun-synchronism</td>
<td>inclination and altitude</td>
</tr>
<tr>
<td>aliasing of all tides</td>
<td>repeat period</td>
<td>altitude</td>
</tr>
<tr>
<td>accessibility of celestial sphere</td>
<td>orbital precession</td>
<td>inclination and altitude</td>
</tr>
<tr>
<td>discontinuities in orbit</td>
<td>orbit maintenance frequency</td>
<td>altitude</td>
</tr>
<tr>
<td>mission lifetime</td>
<td>orbital decay</td>
<td>gross altitude</td>
</tr>
</tbody>
</table>
Some of these are fundamental and have an impact on the overall design of the system. In particular, the selection of a sun- or non-sun-synchronous orbit is of primary importance. The total altitude range is also critical to the design. After that, there is a certain degree of freedom in the choice of parameters. Previous mission orbits may also determine the choice of orbit (e.g. Jason-1 on the tracks of Topex/Poseidon, Envisat on those of ERS-2).

Orbit maintenance

The orbit maintenance requirements for altimetry missions are usually that the deviation of the actual ground track from the nominal one is kept below 1 km and that the mean local nodal crossing time matches the nominal one to better than within five minutes. The orbit maintenance strategy aims for minimum disturbance of the payload operation. In-plane manoeuvres are used for altitude adjustment to compensate for the effects of air-drag. This altitude decay controls affects the ground-track repeatability, mainly in the equatorial regions. The frequency of these manoeuvres is determined by the rate of orbital decay, which in turn is determined by the air density, and this is a function of solar activity. The nominal rate for these in-plane manoeuvres is nominally twice a month. They will do not interrupt the operations of most sensors. Out-of-plane corrections are used to correct rectify the steady drift of inclination mainly caused by solar and lunar gravity perturbations. The solar wind also influences inclination, but its contribution is typically an order of magnitude smaller than the one given made by solar and lunar gravity.

Inclination drift degrades ground-track maintenance at high latitudes. The drift rate does not depend on air density and corrections are required every few months. As they are out-of-plane they require a 90-degree rotation of the spacecraft, to align the thrusters with the required thrust direction, so these manoeuvres will be performed in during eclipse to avoid the risk of optical sensors viewing the sun.
3.2.2.3. Geophysical corrections

The following corrections are computed:

Geophysical corrections

- **Ocean tides**
 Corrections for solid earth and sea surface height variations due to the attraction of the Sun and Moon. Calculated by models. Order of magnitude: 1 m in mid-ocean, up to 15-20 m near some shorelines.

- **Solid earth tides**
 Corrections for solid earth variations due to the attraction of the Sun and Moon. Calculated by models. Order of magnitude: 50 cm.

- **Pole tides**
 Corrections for variations due to the attraction of the Sun and Moon. Calculated by models. Order of magnitude: 2 cm.

- **Tidal loading**
 Corrections for height variations due to changes in tide-induced forces acting on the Earth's surface. Calculated by models. Order of magnitude: 30 cm

Propagation corrections

- **Ionosphere**
 Correction for the path delay in the radar return signal due to the atmosphere's electron content. Calculated by combining radar altimeter measurements acquired at two separate frequencies (C-band and Ku-band for Topex and Jason-1, Ku-band and S-band for Envisat). Order of magnitude: 0 to 50 cm

- **Wet troposphere**
 Correction for the path delay in the radar return signal due to liquid water in the atmosphere. Calculated from radiometer measurements and/or meteorological models. Order of magnitude: 0 to 50 cm

- **Dry troposphere**
 Correction for the path delay in the radar return signal due to the atmosphere. Calculated from meteorological models. Order of magnitude: 2.3 m

Surface corrections

- **Inverse barometer**
 Correction for variations in sea surface height due to atmospheric pressure variations (atmospheric loading). Calculated from meteorological models. Order of magnitude: about 15 cm, depending on atmospheric pressure
Electromagnetic bias
Correction for bias in measurements introduced by varying reflectivity of wave crests and troughs. Correction calculated from models. Bias uncertainty is currently the biggest factor in altimeter error budgets. Order of magnitude: from 0 to 50 cm, depending on wave heights
3.2.2.4. Instrumental errors

The following corrections can be computed (depending on the satellites):

- **USO correction** (Ultra-Stable Oscillator)
 Correction for drift of onboard oscillators used for the internal clock, particularly for sending radar pulses. The degree of drift depends on the oscillator frequency.
 Order of magnitude: 1 cm

- **centre of gravity**
 Correction for variations in the satellite's centre of gravity, due to fuel consumption, solar panel orientation and other factors (the presence of this correction depends on the satellites).

- **Correction tables**
 Corrections for instrument and algorithm effects that cannot be modelled. These tables are derived from altimeter simulations (the presence of this correction depends on the satellites).
 Order of magnitude: a few centimeters

- **Waveforms (before retracking)**
 Correction for effects due to filters used to eliminate certain frequencies in the return radar signal.
 Order of magnitude: a few centimeters
3.2.2.5. Reference surfaces

Several surfaces are used as references, either for the datasets (e.g. sea surface height with respect to ..., etc), or as additional information. Most are specific to the ocean.

Reference ellipsoid

The reference ellipsoid is an arbitrary reference surface that is a rough approximation of the Earth's shape, which is basically a sphere 'flattened' at its poles. The length of one of the axes at the equator is chosen so that the ellipsoid coincides with mean sea level at this latitude. It is the first-order definition of the non-spherical shape of the Earth as an ellipsoid of revolution.

Geoid

The marine geoid is the shape of the sea surface assuming a complete absence of perturbing forces (tides, wind, currents, etc.). The geoid reflects the Earth's gravitational field (it is an equipotential surface) and varies in height by as much as 100 metres over distances of several thousand kilometres due to uneven mass distribution within the planet's crust, mantle and core. Other, less pronounced irregularities are also visible over smaller distances. These reflect the ocean bottom topography.

The marine geoid can be estimated using among other things altimetry measurements of sea surface height. Absolute dynamic topography can be defined as sea surface height with respect to the geoid.

Mean sea surface

The Mean Sea Surface represents the sea level due to constant phenomena. It is the sum of the geoid and the Mean Dynamic Topography (that includes the permanent stationary component of ocean dynamic topography).

The Mean Sea Surface is computed from altimetry, averaging the data over several years. Sea level anomalies (also called sea surface height anomalies) are sea surface heights with respect to the Mean Sea Surface.

Mean dynamic topography

The Mean Dynamic Topography is the permanent stationary component of ocean dynamic topography. This mean circulation is not produced directly from altimetry data, which rather provide the mean sea surface, consisting of the marine geoid plus the sea elevation due to the ocean mean. We therefore have to combine altimetry data with other data (in-situ, gravimetric satellites, etc), to determine the geoid precisely, and by subtracting it, compute the mean circulation.

Bathymetry

Bathymetry is the measurement of the ocean depths. Although is has no direct use in altimetry data processing, it can be useful in shallow water (since ocean altimetry is not as effective there), or for comparing with ocean features such as currents.

Bathymetry can be computed using among other things altimetry sea surface height measurements (via the geoid).
3.2.2.6. Flags

In general, flagging consists of three parts: instrument flags (on/off), telemetry flags (preliminary flagging and editing) and data quality flags (geophysical processing flags).

- Telemetry flags are initially based on altimeter modes and concern checking of telemetry data quality. Only severely corrupted data are not processed. The flag setting used is designed to get a maximum of data into the Sensor Data Records. Science data are processed only when the altimeter is in a tracking mode.
- Quality flags involve residuals from smoothing or fits from the data themselves. Flag setting checks for gaps, exceeded limits and excessive changes. Among these flags, some have a general meaning, describing the measurement environment.
- Other flags indicate what type of surface is beneath the satellite (ocean, ice, solid earth, etc).
- Instrument flags tell us which instruments are on and/or which frequencies are used (mostly for Topex/Poseidon).
3.2.2.7. Retracking

Retracking altimetry data is done by computing the departure of the waveform's leading edge from the altimeter tracking gate and correcting the satellite range measurement (and surface elevation) accordingly.

![Diagram illustrating retracking correction.](image)

Typical ice sheet altimeter waveform illustrating the retracking correction that must be applied to compensate for deviation of the waveform's leading edge from the on-board altimeter tracking gate. (Credits NASA/GSFC)

The major stages in the acquisition and tracking of the waveforms are as follows. At regular intervals defined by the Pulse Repetition Frequency (PRF), frequency linearly modulated pulses are transmitted by the altimeter towards the Earth's surface. After reflection on the surface, the pulse is received back on board and mixed with a pulse similar to the emitted one which has been triggered by the tracker information. The mixed pulse, which is referred to as the 'individual echo', provides a sampled measurement of the return power as a function of time, distance or frequency. In order to reduce the statistical fluctuations (speckle) affecting the individual echoes and to perform real-time tracking (i.e. to maintain the signal inside an analysis window as far as range and power are concerned), these echoes are averaged on-board over a period which corresponds to the altimeter's duty cycle (typically 50 ms). The resulting signal is referred to as an 'averaged echo' or a 'waveform'. It is processed by the on-board tracking system to derive the range and power. In the case of Topex, the SWH information is also extracted. This information is then used as input for the tracking loop during the duty cycle that follows.

The acquisition and tracking functions are carried out by two subsystems. The first one performs acquisition of the waveforms, this is the Radio Frequency Unit (RFU). The second one processes the waveforms, this is the Processing and Control Unit (PCU).

Over topographic surfaces, a radar altimeter's on-board tracking system is unable to maintain the echo waveform at the nominal tracking position in the filter bank, due to rapid range variations. This results in an error in the telemetered range known as tracker offset. Retracking is the term used to describe a group of non-linear ground processing estimation techniques which attempt to determine the tracker offset from the telemetered echoes, and thereby estimate the range to the point of closest approach on the surface. Peaky echoes from sea ice cause range tracking jitter, which also results in tracker offset.

For example, there are three independent retracking techniques used by Envisat RA2 over non-ocean surfaces:

- Ice2 retracker
The ice2 retracker was designed specifically for Envisat in order to extract parameters related to geophysical phenomena over land surfaces as well as water surfaces. This retracking fits a Brown-like model to the altimeter waveform.

The output parameters are: the leading-edge amplitude, the range, the leading-edge width, the trailing edge slope and the backscatter.

- **Sea-ice retracker**

 The second retracker is a threshold retracker intended for use with data from sea ice, i.e. very specular or narrow-peaked echoes. From the parameterisation, a tracker offset is calculated. In addition, an estimate of the backscatter is made from the power in the filter bank. Although the given algorithm is general, only Envisat RA2 Ku-band calculations are currently done for sea ice.

 The sea ice retracking algorithm uses a threshold to determine the leading-edge position calculated as a fraction, $T_{02} j$, of the peak amplitude A_{sea}. The leading-edge position is taken as the point on the echo that first crosses the amplitude $T_{02} j A_{\text{sea}}$, where the scaling factor is currently set to 0.5.

- **OCOG retracker**

 The Offset Centre-of-Gravity (OCOG) retracker is most suited for continental ice data. The waveform pair is parameterised using the OCOG scheme. From the parameterisation, a tracker offset is calculated. In addition, an estimate of the backscatter is made from the power in the filter bank.

 In OCOG retracking, the echo is replaced with a box that has the same centre of area as the echo. The box is defined by parameterisation of the waveform using three measurements, i) the position of the centre of area, ii) the width of the box, and iii) the amplitude of the box.

 The leading edge position is taken as the point on the echo that first crosses the amplitude $T_{01} j A_{\text{ocog}}$, where $T_{01} j$ is an empirically determined threshold, currently set to 0.5.
3.2.2.8. High-level processing

Once level 2 data (i.e. data incorporating instrumental, atmospheric and geophysical corrections, and validated for quality assurance) have been processed, more advanced processing can be applied. This involves data qualification, pre-computing some parameters, re-projecting others, making a grid out of the along-track data, and even merging several different datasets from various satellites.

Selecting valid data

Processing high-level altimetry data begins with quality control, and validation of altimetry data and geophysical corrections. Only valid ocean data are selected. Editing criteria for each satellite is provided in the handbooks.

Applying altimetric corrections and computing physical parameters

Altimeter measurements have many potential sources of error. They need to be corrected for instrumental errors and geophysical influences (tides, atmospheric delays, etc). Then, by subtracting the range from the satellite's altitude, the (corrected) surface height can be obtained. Other parameters can also be derived, such as sea level anomalies, etc.

Reducing orbit error: multi-mission processing

Using multiple satellite together makes high-definition altimetry possible. The main point of multi-mission processing is to intercalibrate the different altimeters.

Multi-mission crossover differences are minimised by multi-satellite orbit error determination, or by adjusting less accurate orbits using a more precise mission as a reference. This is done for missions that do not have very accurate orbit determination (ERS and GFO) but also to remove biases and differences with the reference mission (T/P from February 2004, Envisat) [Le Traon et al., 1995], [Le Traon and Ogor, 1998]. Using the precision of the reference mission orbit, the orbit error can be estimated very accurately.

Mapping (or gridding) the along-track data

Altimetry data are, basically, along-track. For ease of use and compatibility with other datasets, they can be gridded, i.e. data along the track are interpolated and provided as points on a grid (e.g. data every 1/3° in longitude and latitude).

References:
3.2.3. Data qualification : "CalVal"

Calval (CALibration / VALidation) is what determines data quality. This step involves a series of quality controls designed to ensure a continuous supply of data.

Calval teams calibrate the satellite instruments and determine the parameters, corrections, bias and so on to be applied to measurements. In particular, this task involves validating and refining algorithms in close collaboration with processing system development teams and users. Once the mission is fully underway, Calval operations consist in determining data quality and keeping a check on instrument drift. Quality control is achieved through statistical data analysis, analyses at crossover points, and comparisons between orbit cycles. Data are also compared with other missions.

Calibration phase

Absolute calibration is the comparison of the engineering measurement with an independent measurement (e.g. buoy, tide gauge) of the same parameter (range, sea surface height, etc.). Absolute calibration provides one reference point for the complete altimetric time series, a decade after the absolute calibration of ERS-1. In relative calibration, two altimetry systems are compared through their global geophysical data products. Due to the huge number of globally-distributed measurements processed, relative calibration is significantly more precise than local absolute calibration. This is where the main benefit of this technique lies: to ensure consistency in two different but momentarily overlapping missions.

The altimeter's calibration and validation activities are normally organised by working teams with thematic responsibilities. Verification and absolute calibration of range and sigma0 are tasks of the In-flight Instrument Calibration Team, orbit validation is the task of the Precise Orbit Determination Team, and relative calibration and product validation are the responsibility of the Cross-Calibration and Validation Team.

The altimetric measurement time series, being produced from different altimetric missions, will need to be inter-calibrated, within a required precision, in order to obtain a consistent multi-satellite data set. Inter-calibration, or so-called cross-calibration, is the determination of relative biases between the measurements of different altimeters.

Cross calibration activities are divided into product validation and algorithm verification. The objective behind product validation is to authorise the distribution of validated products to all users within weeks/months after launch. The geophysical processing algorithms also undergo a post-launch verification of real data with the aim of assessing algorithm performance, tuning processing parameters and applying relevant calibration coefficients at the end of the commissioning phase.

Data exploitation

After the Commissioning Phase, the Routine Exploitation phase begins, and continues until the end of the altimetry mission. The commissioning phase group is then required to formulate further recommendations at the completion of the phase (e.g. updating parameters in processors by applying new calibration values, updating algorithms, opportunity to reprocess commissioning phase data, proposed new products and algorithms, etc). During the routine phase these recommendations are taken on board, and new instrument or processing anomalies are investigated and solved.

Long-term altimeter range, SWH, sigma0/wind speed and the stability of other parameters is monitored and further comparisons are made with in situ tide gauge data or other altimetry missions. The aim of this is to update previous calibration/validation results and to give a consistent time series for all the altimetry missions.
3.3. Future technology improvements

Satellite altimetry has proven to be a valuable source of data for a broad range of applications. Looking beyond the missions in operational service today, future satellites will need to provide better spatial and temporal coverage so that we can study mesoscale variations and other phenomena more closely. For the medium term, consideration is now being given to altimetry missions capable of 'scanning' the ocean surface to acquire data at scales of a few tens of kilometres, passing over the same spots every few days. Other projects on the drawing board are based on constellations of dedicated, low-cost microsatellites. The use of 'opportunity signals' is also being considered, with the possibility of retrieving reflected signals transmitted by satellites in the Global Navigation Satellite System (GNSS).

Ka-band altimetry

A Ka-band (35 GHz) altimeter would be much less affected by the ionosphere than one operating at Ku-band, and would have greater performance in terms of vertical resolution, time decorrelation of echoes, spatial resolution and range noise. With the design of an adapted tracker algorithm, near-continuous altimetric tracking over all kinds of surface could be performed, which is especially important when approaching or leaving coasts. The main drawback is that Ka-band electromagnetic waves are sensitive to rain. However, this does not prevent them from acquiring a fairly high percentage of measurements, except for strong rain rates.

A Ka-band altimeter, AltiKa (CNES), should be launched in 2009.

Further information

Altimeter-interferometers

An altimeter/interferometer would include several altimeters mounted on masts which would acquire measurements simultaneously, thus providing continuous, single- or multi-altimeter wide-area coverage.

Further information

Constellations

One of the ways to improve altimetry resolution is to use several satellites at the same time. Until now, this has been done with very different types of satellite. The use of several identical satellites in constellation could reduce costs (development costs, and launch costs too for micro-satellites launched by the same rocket).

Further information

GNSS altimetry

One approach being pursued to achieve maximum altimetry data coverage is to receive reflected signals transmitted by satellites in the Global Navigation Satellite System (GNSS), in particular from the Global Positioning System (GPS) constellation and its European civil counterpart, Galileo. This concept is based on a satellite in near-polar orbit (at an altitude of 400 to 500 km) retrieving signals emitted by multiple satellites and reflected by the ocean surface, then analysing these signals to compute sea surface height. This concept is currently still only in the study phase.

Further information:
- Special Issue on Satellite Altimetry: New Sensors and New Application, Sensors, Ge Chen and Graham D.
3.3.1. Ka-band altimeter

A Ka-band (35 GHz) altimeter would be much less affected by the ionosphere than one operating at Ku-band, and would have enhanced performance in terms of vertical resolution, time decorrelation of echoes, spatial resolution and range noise. With the design of an adapted tracker algorithm, near-continuous altimetric tracking above all kinds of surface could be performed, which is especially important when approaching or leaving coasts. The main drawback is that Ka-band electromagnetic waves are sensitive to rain. However, this does not prevent them from acquiring a fairly high percentage of measurements, except for strong rain rates.

Use of the Ka-band for an altimeter would provide:

- Low ionospheric attenuation
 ----this can be considered as negligible, except for some exceptional ionospheric situations-- and would therefore eliminate the need for a dual-frequency altimeter. The DORIS system can provide data for ionospheric corrections whenever there are significant perturbations.

- Higher pulse repetition frequency (4 kHz).
 The decorrelation time of sea echoes at Ka-band is shorter than at Ku-band. This makes it possible to increase significantly the number of independent echoes per second compared with Ku-band altimeters.

- Larger bandwidth (up to 500 MHz).
 The 500 MHz bandwidth that can be used at Ka-band provides a high vertical resolution (0.3 m) which is improved with respect to other altimeters (including Jason-1 and Envisat).

- Better description of sea surface roughness than at Ku-band
 The eight-millimetre wavelength is better suited to describing the slopes of small facets on the sea surface (capillary waves, etc.) and enables more accurate measurement of the backscatter coefficient over calm or moderate seas, thus leading to a noise reduction of a factor of two compared to Poseidon, for wave heights greater than 1 m.

- Lower radar penetration of snow and ice (penetration of snowpack is less than one centimetre at Ka-band, compared with five metres at Ku-band) The altimetric observation and height restitution thus correspond to a thin subsurface layer. This should improve measurements of snowpack with respect to ice aging in the surface layers of the polar ice caps. Moreover, ice grain size would also be measurable. Combined with better spatial resolution, Ka-band would therefore allow closer monitoring of sea and continental ice.

The one major drawback of Ka-band is that attenuation due to water or water vapour in the troposphere is high. Rain cells --which are often dense and frequent in the Tropics-- will remain a constraining factor, since the radar wave can be attenuated by 2 dB in heavy rain. Typically, if the rain rate is higher than 1.5 mm/h, the radar echoes will be unusable (whereas at Ku-band, echoes are hardly affected at rain rates less than 3 mm/h). However, impact studies carried out on the basis of seven years of TMR data from Topex/Poseidon show that rain rates of over 1.5 mm/h only occur globally 10 per cent of the time. A Ka-band altimeter would therefore still be able to acquire measurements 90% of the time. If the satellite is on a sun-synchronous orbit, rain frequency will also have to be factored in (it rains most often in the Tropics between 6:00 and 12:00 a.m. and 6:00 and 12:00 p.m.). Conversely, this 1.5-mm/h threshold will also be likely to lead to more accurate mapping of rain cells over the ocean --one of the major remaining unknown factors in the global water budget- and yield more reliable climatology data.

Further information:
- Verron J., P. Bahurel and P. Vincent, AltiKa: Etude de la circulation océanique mésoéchelle par altimétrie en
3.3.2. Interferometers

An altimeter/interferometer would include several altimeters mounted on masts which would acquire measurements simultaneously, thus providing continuous, single- or multi-altimeter wide-area coverage.

The main limitations of standard nadir-pointing radar altimeters have been understood for a long time. They include the lack of coverage (intertrack distance of typically 150 km for the T/P / Jason tandem) and the spatial resolution (typically 2 km for T/P and Jason), expected to be a limiting factor for the determination of mesoscale phenomena in the deep ocean. In this context, various solutions using off-nadir radar interferometry have been proposed by Rodriguez and al to provide a solution for oceanographic mission objectives. An initial approach is based on the Wide-Swath Ocean Altimeter (WSOA) which was intended to be implemented onboard Jason-2 in 2004 but has now been abandoned.

An altimeter/interferometer would work as follows: each interferometer would send out and receive back a wave from the others.

There are three factors underlying measurement uncertainty:

- Measurement noise, which depends on the antenna baseline: the longer the baseline, the less noise there is. This noise is reduced by mosaicking. The nadir-pointing altimeter also makes it possible to register pixels.
- The error related to ionospheric, tropospheric and sea-state bias effects. Here again, the radiometer's wide antenna lobe will enable tropospheric corrections to be extended reliably across a good proportion of the swath.
- The error induced by satellite roll and pitch, which has a direct impact on measurement geometry, by triangulation. This noise could be minimised by analysing and adjusting ascending and descending data at crossover points.

Final measurement accuracy could be as good as 3.2 cm rms per pixel in the mosaicked data (averaged to 15 km cells).
Example of WSOA measurements along a T/P-Jason-class orbit track. This mosaic offers a huge advantage in terms of describing the dynamic topography at high resolution, since it allows us to measure sea surface gradient (between pixels) and, therefore, geostrophic velocity. Simulations based on realistic model data yield an error of 4.7 cm/s rms (resp. 5.9) on the zonal velocity (resp. meridional velocity). Sampling simulations (based on a T/P-type orbit, since WSOA could be flown on the Jason satellite) show that the WSOA concept would require a constellation of four conventional nadir-pointing satellites in a repeating orbit. The instantaneous field of view would be wider than with a conventional altimeter, making it possible to cover coastal zones and to improve temporal resolution. The major drawback of such a system is that it involves intensive processing to improve accuracy.

Further information:
3.3.3. Constellations

One of the ways to improve altimetry resolution is to use several satellites at the same time (see [Multiple satellite for high-precision altimetry](#)). Until now, this has been done with very different types of satellite. The use of several identical satellites in constellation could reduce costs (development costs, and launch costs too for micro-satellites launched by the same rocket).

The questions to be solved relate to the minimum number of satellites needed, their distribution in time and space, etc. The answers will depend in part on the applications favoured -- and on the financing available.

Further information:
3.3.4. GNSS altimetry

One approach being pursued for achieving maximum altimetry data coverage is to receive reflected signals transmitted by satellites in the Global Navigation Satellite System (GNSS), in particular from the Global Positioning System (GPS) constellation and its future European civil counterpart, Galileo. This concept is based on a satellite on a low-earth orbit (at an altitude of 400 to 500 km) retrieving signals emitted by multiple satellites and reflected by the ocean surface, then analysing these signals to compute sea surface height. The concept is currently still only in the study phase.

The concept works as follows: a spaceborne GPS receiver receives a signal downlinked from a satellite in the constellation, then receives the return echo of the same signal reflected by the ocean surface. By measuring the delay between the two, we can calculate the sea surface height. The backscatter depends on the angle of incidence - the receiver only senses specular reflection - and on sea surface roughness. Consequently, the system only works well at low angles of incidence up to 10 degrees. Therefore signal returns will only be strong for GPS satellites ‘above’ the receiving satellite, which will number no more than ten at any one time. In fact, several return echoes above the same area on the ocean will have to be averaged (from 1 to 10 degrees) to reduce the noise. The main weakness of this concept is its accuracy: at an angle of incidence of 10 degrees, the sea surface height error would be several metres. The only way to improve accuracy would be to retrieve more return echoes from the same point on the ocean surface. That would depend on the number of satellites in the GNSS constellation, and the GPS constellation is not expected to expand significantly. On the other hand, the European Space Agency is developing its own GNSS, called Galileo, which could add to the system in the years ahead. The highest accuracy at any given time would be 30 centimetres rms.

Simulations show that a single satellite receiving GPS signals, orbiting at an altitude of 400 kilometres, would cover the globe in 24 hours with a ground track spacing of 75 kilometres. In other words, the satellite would ‘see’ any given cell of 50 km² on the Earth’s surface 12 times in 10 days. On this basis, two satellites providing global coverage would make it possible to achieve sea surface height accuracy of 6 cm rms over an average of 10 days and at a resolution of 50 km². Eight satellites would offer the same level of accuracy, but at a resolution of 25 km².

The major advantage of this mission of opportunity concept is its low cost. Its main drawback is its accuracy, which only Galileo (or Glonass, the Russian satellite navigation system) could increase. It would complement conventional altimetry missions, which are still needed to track climatic variations over the oceans. Fixed-location GPS receivers could also be installed along coastlines, for example on masts at a height of 200 metres, to deploy a high-quality network that would complement the ocean coverage provided by satellites carrying GPS receivers.

This concept has already been tested on the US Space Shuttle. It is currently flying on the Champ satellite, but no data have been analysed yet. Proposals have been submitted to NASA and ESA for missions that could fly starting in 2010. Another test has also been carried out by UK-DMC (the United Kingdom Disaster Monitoring Constellation), which proved the feasibility of the concept. However, the signal-to-noise ratio is too low for altimetry applications [Gleason et al., 2005].
Further information

4. Missions

Precise satellite altimetry missions have transformed the way we view Earth and its oceans. Highly accurate altimetry measurements give us the ability to observe sea surface height systematically.

The earliest altimeters were intended to demonstrate proof of concept. With Seasat (1978), the first scientific results were shown. Since 1986 (Geosat), these missions have been providing vital information for an international user community. Besides international programs dedicated to studying global oceans and climate, such as WOCE, WCRP, Clivar and GOOS, and others working on the El Niño phenomenon (TOGA), ocean forecasting projects such as GODAE are now getting underway. All these programs call for high-quality altimetry measurements, which are merged with other data to obtain the broadest picture possible of the underlying mechanisms at work, and assimilated into ocean and climate prediction models.

Past altimetry missions

- The first altimetric satellites: Skylab, GEOS 3, Seasat
- Geosat
- ERS-1
- Topex/Poseidon

Current altimetry missions

- ERS-2
- GFO
- Jason-1
- Envisat

Future altimetry missions

- Jason-2
- Cryosat
- (AltiKa) (name of mission to be defined)
- NPOESS
- Sentinel 3
- See also future technology improvements

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Agency</th>
<th>Launch</th>
<th>Altitude</th>
<th>Altimeter</th>
<th>Frequency used</th>
<th>Repetitivity</th>
<th>Inclination</th>
<th>Error budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skylab</td>
<td>NASA</td>
<td>1973</td>
<td>435 km</td>
<td>S193</td>
<td>?</td>
<td>50°</td>
<td></td>
<td>Range: 1 m; Orbit: ~500 cm</td>
</tr>
<tr>
<td>GEOS 3</td>
<td>NASA</td>
<td>1974</td>
<td>845 km</td>
<td>ALT</td>
<td></td>
<td>115°</td>
<td></td>
<td>Range: 25 cm; Orbit: ~500 cm</td>
</tr>
<tr>
<td>Satellite</td>
<td>Agency</td>
<td>Year</td>
<td>Altitude (km)</td>
<td>Mode</td>
<td>Band</td>
<td>Repeat Cycle</td>
<td>Range</td>
<td>Orbit</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>---------------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Seasat</td>
<td>NASA</td>
<td>1978</td>
<td>800</td>
<td>ALT</td>
<td>Ku-band</td>
<td>17 days?</td>
<td>108°</td>
<td>~100 cm</td>
</tr>
<tr>
<td>Geosat</td>
<td>US Navy</td>
<td>1985</td>
<td>800</td>
<td>Ku-band</td>
<td>17 days</td>
<td>108</td>
<td>4 cm; Orbit: 30-50 cm</td>
<td></td>
</tr>
<tr>
<td>ERS-1</td>
<td>ESA</td>
<td>1991</td>
<td>785</td>
<td>RA</td>
<td>Ku-band</td>
<td>35 days</td>
<td>98.5°</td>
<td>3 cm; Orbit: 8-15 cm</td>
</tr>
<tr>
<td>Topex/Poseidon</td>
<td>NASA/CNES</td>
<td>1992</td>
<td>1336</td>
<td>Topex Poseidon-1</td>
<td>10 days</td>
<td>66°</td>
<td>2 cm; Orbit: 2-3 cm</td>
<td></td>
</tr>
<tr>
<td>ERS-2</td>
<td>ESA</td>
<td>1995</td>
<td>785</td>
<td>RA</td>
<td>Ku-band</td>
<td>35 days</td>
<td>98.5°</td>
<td>3 cm; Orbit: 7-8 cm</td>
</tr>
<tr>
<td>GFO</td>
<td>US Navy/NOAA</td>
<td>1998</td>
<td>800</td>
<td>GFO-RA</td>
<td>Ku-band</td>
<td>17 days</td>
<td>108°</td>
<td>3.5 cm; Orbit: ? cm</td>
</tr>
<tr>
<td>Jason-1</td>
<td>CNES/NASA</td>
<td>2001</td>
<td>1336</td>
<td>Poseidon-2</td>
<td>10 days</td>
<td>66°</td>
<td>2 cm; Orbit: 2-3 cm</td>
<td></td>
</tr>
<tr>
<td>Envisat</td>
<td>ESA</td>
<td>2002</td>
<td>800</td>
<td>RA-2</td>
<td>Ku and S-band</td>
<td>35 days</td>
<td>98.5°</td>
<td>2-3 cm; Orbit: 2-3 cm</td>
</tr>
<tr>
<td>Jason-2</td>
<td>CNES/NASA/Eumetsat/NOAA</td>
<td>2008</td>
<td>1336</td>
<td>Poseidon-3</td>
<td>10 days</td>
<td>66°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryosat</td>
<td>ESA</td>
<td>2009</td>
<td>720</td>
<td>SIRAL</td>
<td>Ku-band</td>
<td>369 days</td>
<td>92°</td>
<td></td>
</tr>
<tr>
<td>TBD</td>
<td>ISRO/CNES</td>
<td>2009</td>
<td>TBD</td>
<td>AltiKa</td>
<td>Ka-band</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>
4.1. Past altimetry missions

Altimetry was announced as a priority at the Williamstown Symposium in 1969. The 1970s saw the development of accurate satellite altimeter systems, with Skylab (which produced the first measurements of undulations in the marine geoid due to seafloor features), GEOS-3 and Seasat, whose data were widely and freely distributed to scientists throughout the world, laying the foundations for a new generation of ocean satellites. In the 1980s, only Geosat was launched, whose data was at first classified.

In the 1990s, with ERS-1 and Topex/Poseidon, altimetry began providing vital information to a growing international user community (more than 1,000 teams of users around the world in 2006).

Improvements in measurement accuracy since the first satellite altimetry missions has enabled us to observe ocean variations at close quarters since 1992.

(Credit: CNES)

- The first altimetric satellites: Skylab, GEOS 3, Seasat
- Geosat
- ERS-1
- Topex/Poseidon
4.1.1. Skylab

Skylab, America's first experimental Space station, was launched in May 1973 and visited by crews three times in 1973 and 1974. It carried a generalised general active and passive microwave measurement system called S193. This instrument carried the first spaceborne altimeter, for the purpose of "to provide providing ocean state effects on pulse characteristics." Using a pulse width of 0.1 microseconds this system was able to achieve a resolution of 15 m. It only operated over short orbital segments only but was able to demonstrate the measurement of coarse features of the marine geoid, such as major ocean trenches.

Further information on [NASA/KSC website](https://nasa.gov)
GEOS 3 (Geodynamics Experimental Ocean Satellite) was launched in April 1975, and ended its mission in December 1978. It carried the first instrument to yield useful measurements of sea level and its variability over time.

When a satellite flies at higher altitudes, this reduces the strength of the altimeter's return signal (which is proportional to the cube of the height) and alters the size of the footprint on the ground. Because the satellite is incapable of emitting a more powerful signal, the pulse compression technique must be used above a certain altitude to compensate for the weakened return signal. \$\$ ajout traductrice à vérifier Since GEOS 3 (1974), which flew at an altitude of 840 km, all altimeters have used pulse compression, and the resolution made possible by this compression has been enhanced. GEOS 3 offered significant improvements over Skylab's altimeter, including improved performance as well as greater global coverage, but this performance was still not good enough to enable useful science to be extracted from its measurements.

Further information on International Laser Ranging Service (ILRS) web site (NASA/GSFC)
4.1.3. The Seasat mission

Seasat (SEAfaring SATellite) was launched by NASA in June 1978, and ended its mission in October 1978, due to a malfunction. Seasat's experimental instruments included a synthetic aperture radar, which provided the first ever highly-detailed radar images of ocean and land surfaces from Space; a radar scatterometer, which measured near-surface wind speed and direction; a radar altimeter, which measured ocean surface and wave heights; and a scanning multi-channel microwave radiometer measuring surface temperatures, wind speeds and sea ice cover.

Seasat carried a range of sensors selected for remote sensing of the oceans, including the first high-performance altimeter. The improvement required for Seasat could not be achieved by simply upgrading the GEOS 3 design. Although video circuitry could be designed to process higher bandwidth signals, at the expense of increasing power, the pulse compression filters required for direct implementation of the required waveform were simply not available. A new approach was devised: the full-deramp technique. With this technique, no compression filter is required in the receiver. From Seasat onwards, all altimeters have been using this technique, achieving a significant improvement in resolution.

In oceanography, Seasat gave us our first global view of ocean circulation, waves and winds, providing new insights into the links between the ocean and atmosphere that drive our climate. For the first time, the state of an entire ocean could be seen all at once. Seasat's altimeter mapped ocean topography, allowing scientists to determine ocean circulation and heat storage. The data also revealed new information about the Earth's gravity field and the topography of the ocean floor. Since Seasat, advanced ocean altimeters on JPL's Topex/Poseidon and Jason missions have been making precise measurements of sea surface height which are used to study climate phenomena such as El Niño and La Niña. Ocean altimetry has since become part of weather and climate models and many other applications.

Further information on Seafaring Satellite Sets 25 Year Trend (NASA/JPL website)
4.1.4. The Geosat mission

Geosat (GEOdetic SATellite) was launched in March 1985, and ended its mission in January 1990. Its primary task was to measure the marine geoid for the US Navy, but it also provided measurements of sea state and winds which proved to be useful for operational Navy purposes. Once this 18-month mission was over, the satellite was put on a 17-day repeat orbit (Exact Repeat Mission: ERM) which began on 8 November 1986, retracing Seasat's ground tracks, and providing the scientific community, through NOAA, with altimeter data for over three years. Geosat was the first mission to provide long-term high-quality altimetry data.

Further information on the data (NOAA website)
4.1.5. ERS-1 mission

The ERS-1 satellite's main mission was to observe Earth, in particular its atmosphere and ocean. Built by ESA, it carried several instruments, including a radar altimeter.

ERS-1 was launched in July 1991, switched off in June 1996 and retired in March 2000. ERS-2, the follow-on from ERS-1, was launched in April 1995. It was used in tandem with ERS-1 from August 1995 to June 1996, their identical orbits (35 days) having a one-day shift.

ERS-1 flew on three different orbits:

- a 3-day period for calibration and sea ice observation,
- a 35-day period for multi-disciplinary ocean observations,
- a 168-day period for geodetic applications.

Further information on:

- Onboard instruments
- Orbit

- ERS missions Home Page (ESA website),
- ERS data processing (Cersat website)
4.1.5.1. Instruments

The ERS satellites carry instrumentation consisting of a core set of active microwave sensors supported by additional, complementary instruments:
- AMI - active microwave instrument consisting of a synthetic aperture radar (SAR) and a wind scatterometer
- RA - radar altimeter
- ATSR - along-track scanning radiometer
- Gome (ERS-2) - global ozone monitoring experiment
- MWS - microwave sounder
- PRARE - precise range and range rate equipment
- LRR - laser retroreflector

The satellite concept is based on reusing the Multi-mission Platform, developed within the French SPOT programme. This platform provides the major services for satellite and payload operations, in particular attitude and orbit control, power supply, monitoring and control of payload status, and telecommunications with the ground segment.

RA altimeter

The Radar Altimeter (RA) is a Ku-band (13.8 GHz) nadir-pointing active microwave sensor designed to measure the return trip time for echoes from ocean and ice surfaces. Functioning in one of two operational modes (ocean or ice) the Radar Altimeter provides information on significant wave height, surface wind speed, sea surface elevation, relating to ocean currents, the surface geoid and tides, and various parameters over sea ice and ice sheets.

Further information

MicroWave Sounder

The Along-Track Scanning Radiometer (ATSR) combines an infrared radiometer and a microwave sounder for measuring sea surface temperature, cloud top temperature, cloud cover and atmospheric water vapour.
content. This is used, among other things, to correct altimetry data from path delay due to atmospheric water. Further information

Location systems

The ERS sensor location system includes two instruments - the Precise Range and Range-rate Equipment (PRARE) and the Laser Retroreflectors (LRR) to provide precise orbit determination for the referencing of height measurements made by the Radar Altimeter. The PRARE has been non-operational since launch, but a description of it is included here for completeness.

PRARE

The Precise Range and Range-rate Equipment (PRARE) is included for the accurate determination of the satellite's position and orbit characteristics, and for precise position determination (geodetic fixing). Further information

LRR

The LRR is highly accurate but it requires ground stations that are complex to operate, and its use can be restricted by adverse weather conditions. It is used to calibrate the other location system so that the satellite's orbit can be determined as accurately as possible. Further information

Further information on [ERS instruments](https://www.esa.int/ERS) (ESA website)
4.1.5.1.1. RA

The Radar Altimeter (RA) is a Ku-band (13.8 GHz) nadir-pointing active microwave sensor designed to measure the return trip time for echoes from ocean and ice surfaces. Functioning in one of two operational modes (ocean or ice) the Radar Altimeter provides information on significant wave height, surface wind speed, sea surface elevation (relating to ocean currents, the surface geoid and tides) and various parameters over sea ice and ice sheets.

Function

The Radar Altimeter is a Ku-band (13.8 GHz) nadir-pointing active microwave sensor designed to measure the time return echoes from ocean and ice surfaces. Functioning in one of two operational modes (ocean or ice) the Radar Altimeter provides information on significant wave height; surface wind speed; sea surface elevation, which relates to ocean currents, the surface geoid and tides; and various parameters over sea ice and ice sheets.

Principle

The altimeter emits a radar beam that is reflected back to the antenna from the Earth's surface. RA operates at a single frequency (13.6 GHz in the Ku-band).

The Radar Altimeter operates by timing the two-way delay for a short-duration radio frequency pulse, transmitted vertically downwards. The level of accuracy required for range measurement (better than 10 cm) calls for a pulse compression (full deramp) technique. In ocean mode a chirped pulse of 20 microseconds duration is generated with a bandwidth of 330 MHz. For tracking in ice mode an increased dynamic range is used, obtained by reducing the chirp bandwidth by a factor of four to 82.5 MHz, though this also results in a coarser resolution (see how altimetry works for details).

Technical data

<table>
<thead>
<tr>
<th>Emitted Frequency (GHz)</th>
<th>Single-frequency (Ku) - 13.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Repetition Frequency (Hz)</td>
<td>1020</td>
</tr>
<tr>
<td>Pulse duration (microseconds)</td>
<td>20</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>330 and 82.5</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>1.2</td>
</tr>
<tr>
<td>Antenna beamwidth (degrees)</td>
<td>1.3</td>
</tr>
<tr>
<td>Power (W)</td>
<td>50</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Yes</td>
</tr>
<tr>
<td>Specific features</td>
<td>2 bandwidths for ocean and ice measurements</td>
</tr>
</tbody>
</table>

Further information on RA instrument (ESA website)
4.1.5.1.2. MWS: Microwave Sounder

The main objective of the microwave radiometer (MWS) is to measure the integrated atmospheric water vapour column and cloud liquid water content, which are used as correction terms for the radar altimeter signal. In addition, MWS measurement data are useful for determining surface emissivity and soil moisture over land, for surface energy budget investigations to support atmospheric studies, and for ice characterisation.

Function

The MWS measures water vapour content in the atmosphere so that we can determine how it impacts radar signal propagation. Its measurements can also be used directly for studying precipitable water and cloud liquid content along the satellite track.

Principle

The MWS is a passive receiver that collects radiation reflected by the oceans at frequencies of 23.8 GHz and 36.5 GHz.

Radiation measured by the radiometer depends on surface winds, ocean temperature, salinity, foam, absorption by water vapour and clouds, and various other factors. To determine atmospheric water vapour content accurately, we need to eliminate sea surface and cloud contributions from the signal received by the radiometer. This is why the MWS uses different frequencies, each of which is more sensitive than the others to one of these contributions. The frequencies 23.8 GHz and 36.5 GHz are the result of a trade-off between the instrument (reflector) size required to cover a horizontal area on the Earth's surface comparable to the altimeter beam, and the maximum sensitivity to water vapour change in the atmosphere. These frequencies are used to measure the strength of the weak water-vapour emission-line at 22 GHz. In order to eliminate microwave radiation emitted by the Earth's surface, differential measurements at two frequencies must be made. The optimal choice is to use one frequency at the peak of the line and one at the lowest point.

With one feed horn for each frequency, the MWS points via an offset reflector at an angle close to nadir. The instrument is configured in such a way that the 23.8 GHz channel is pointing in the forward direction, the 36.5 GHz channel in the backward direction, with a footprint of about 20 km diameter for each beam.

Further information on MWS instrument (ESA website)
4.1.5.1.3. PRARE

Precise Range and Range-rate Equipment (PRARE) is included for the accurate determination of the satellite’s position and orbit characteristics, and for precise position determination (geodetic fixing). It is a satellite tracking system which provides two-way microwave range and range-rate measurements to ground-based transponder stations.

The PRARE system was developed by the Institut für Navigation (INS) at the University of Stuttgart, Kayser-Threde GmbH, Munich and the Deutsches Geodätisches Forschungsinstitut, Munich, as a German national experiment.

Function

The system was designed to:
* provide, in all weather conditions, precise satellite-to-ground or satellite-to-satellite range and range-rate information,
* very reliable measurements through cross-checks and calibration procedures,
* ensure highly effective operation of the ground segment through data collection and dissemination via the satellite itself, and control of the global network via one central ground station,
* allow rapid generation of products at an archiving, processing and distribution centre.

Principle

The PRARE measurement principle involves two signals sent from the sensor on board the satellite, one signal in the S-band (2.2 GHz) and the other in the X-band (8.5 GHz). Both signals are modulated with a PN code (pseudo-random noise). The time delay in the reception of the two simultaneously-emitted signals is measured at the ground station with great accuracy (<1 ns) and retransmitted to the on-board memory for ionospheric data correction. Collection of meteorological data by the ground station allows corrections to be applied for tropospheric refraction.

Further information on [PRARE instrument](https://www.esa.int) (ESA website)
4.1.5.1.4. Laser RetroReflector

The LRR is an array of mirrors that provides a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit.

Function

A laser retroreflector is attached to a mount on the nadir panel close to the RA antenna. It has two functions:

- support-to-satellite ranging,
- RA altitude calibration.

The LRR is a passive device which is used as a reflector by ground-based SLR (Satellite Laser Ranging) stations using high-power pulsed lasers. In the case of ERS-1, tracking using the LRR was mainly performed by the International Laser Ranging Service (ILRS).

The ILRS provides tracking for the satellite from its global network of laser ranging stations. Laser stations fire short laser bursts at ERS and time the interval before the pulse is reflected back. These ILRS stations are relatively few, but because their positions are very accurately known, they provide a set of independent reference measurements of ERS’s position, which contribute to the satellite’s precise orbit determination.

Principle

The operating principle of the LRR is therefore to measure on the ground the return trip time of laser pulses reflected from an array of corner cubes mounted on the Earth-facing side of the satellite. The corner cubes ensure that the laser beam is reflected back parallel to the incident beam. The detailed design of the cubes includes compensation for the aberration of the laser beam caused by the satellite’s velocity: the satellite moves almost 40 metres between the emission and reception of the laser pulse from the SLR station, and this is compensated for by slight nonparallelism of the reflected beam.

The corner cubes are made of the highest-quality fused silica and work in the visible spectrum. Their performance is optimised at the two wavelengths (694 nm and 532 nm) commonly used in SLR stations. The corner cubes are symmetrically-mounted on a hemispherical surface with one nadir-pointing corner cube in the centre, surrounded by an angled ring of eight corner cubes.

This allows laser ranging in the field of view angles of 360° in azimuth and 60° in elevation around the perpendicular to the satellite’s Earth-facing panel (positioned on the axis at point -Zs with respect to the satellite’s centre of mass).

Further information on ERS (ESA website)
4.1.5.2. ERS-1 orbits

To carry out its mission ERS-1’s orbit had to enable its instruments to scan along predetermined paths designed to give optimum coverage for a set number of orbits. To achieve this, ERS-1 was a three-axis-stabilised, Earth-pointing satellite in yaw steering mode (YSM). The elliptical orbit was sun-synchronous, near-polar, with a mean altitude of 785 km, an inclination of 98.5° and a local solar time at the descending node of 10:30 a.m.

Orbit parameters

35-day orbit

<table>
<thead>
<tr>
<th>Main characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-major axis</td>
<td>7159.5 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.0001042</td>
</tr>
<tr>
<td>Argument of perigee</td>
<td>92.4836°</td>
</tr>
<tr>
<td>Inclination (sun-synchronous)</td>
<td>98.543°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean altitude</td>
<td>782 km</td>
</tr>
<tr>
<td>Nodal period</td>
<td>50 min 25.5 s</td>
</tr>
<tr>
<td>Repeat cycle</td>
<td>35 days</td>
</tr>
<tr>
<td>Number of passes per cycle</td>
<td>1002</td>
</tr>
</tbody>
</table>
Ground track separation at Equator: 80 km
Acute angle at Equator crossings
Longitude at Equator of pass 1
Orbital velocity: 7.45 km/s
Ground scanning velocity

For the other repeat periods:

<table>
<thead>
<tr>
<th></th>
<th>3-day</th>
<th>35-day</th>
<th>168-day</th>
</tr>
</thead>
<tbody>
<tr>
<td>semi major axis</td>
<td>7153.138</td>
<td>7159.496</td>
<td>7147.191</td>
</tr>
<tr>
<td>inclination</td>
<td>98.516 deg.</td>
<td>98.543 deg.</td>
<td>98.491 deg.</td>
</tr>
<tr>
<td>mean altitude</td>
<td>785 km</td>
<td>782 km</td>
<td>770 km</td>
</tr>
<tr>
<td>orbits per cycle</td>
<td>43</td>
<td>501</td>
<td>2411</td>
</tr>
</tbody>
</table>

Further information on [ERS](http://www.esa.org) (ESA website)
The Topex/Poseidon satellite was launched on 10 August 1992 with the objective of "observing and understanding the ocean circulation". A joint project between NASA, the US space agency, and CNES, the French space agency, it carried two radar altimeters and precise orbit determination systems, including the DORIS system.

To be useful for studying ocean circulation, especially on gyre and basin scales, numerous improvements had been made to Topex/Poseidon compared with previous altimetry systems (Seasat, Geosat), including a specially-designed satellite, suite of sensors, satellite tracking systems and orbit configuration, as well as the development of an optimal gravity model for precision orbit determination and a dedicated ground system for mission operations.

Topex/Poseidon laid the foundation for long-term ocean monitoring from Space. Every ten days, it supplied the world's ocean topography, or sea surface height, with unprecedented accuracy.

On 15 September 2002 Topex/Poseidon assumed a new orbit midway between its original ground tracks. The former Topex/Poseidon ground tracks are now overflown by Jason-1. This tandem mission demonstrated the scientific capabilities of a constellation of optimised altimetry satellites. The last data were acquired on October 2005, due to a failure in a pitch reaction wheel. The mission ended on 18 January 2006.
4.1.6.1. Instruments

The Topex/Poseidon satellite was an adaptation by Fairchild Space of the existing Multimission Modular Spacecraft (MMS) which successfully carried the payloads of the Solar Maximum Mission, Landsat 4 and Landsat 5. The MMS design was modified to meet Topex/Poseidon's requirements: a 2,400 kg mass carrying six science instruments - four operational and two experimental.

Topex (Topography Experiment) altimeter, or NRA (NASA Radar Altimeter)

The NRA is a radar altimeter that emits pulses at two frequencies (13.6 and 5.3 GHz, the second frequency is used to determine the electron content in the atmosphere) and analyses the return signal reflected by the surface. The signal's round-trip time is estimated very precisely in order to calculate the range, after applying the necessary corrections (Instrument supplied by NASA).

Further information

Poseidon-1 altimeter, or SSALT (Single frequency Solid State radar ALTimeter)

Poseidon-1 is an experimental instrument. It is a compact, low-power, low-mass instrument offering a high degree of reliability. Poseidon-1 is a radar altimeter that emits pulses at a single frequency (13.65 GHz - Ku-band) and analyses the return signal reflected by the surface. It shares the same antenna as the NRA; thus only one altimeter operates at any given time. It operates about 10% of the time, or one cycle in ten (Instrument supplied by CNES).

Further information

TMR (Topex Microwave Radiometer)

This instrument measures radiation from the Earth's surface at three frequencies (18, 21 and 37 GHz). Measurements acquired at each frequency are combined to determine atmospheric water vapour and liquid water content. Once the water content is known, we can determine the correction to be applied for radar signal path delays (Instrument supplied by NASA).

Further information

Location systems

Altimetric measurements are referred to geodetic coordinates by means of a precise orbit determination system. Two precise orbit determination teams, one operated by CNES and one by NASA, use a combination of LRA and DORIS tracking data.

The location systems on board Topex/Poseidon complemented each other to measure the satellite's position
on orbit to within two centimetres on the radial component. The LRA is highly accurate, but it requires ground stations that are complex to operate, and its use can be restricted by adverse weather conditions. It is used to calibrate the other two location systems so that the satellite orbit can be determined as accurately as possible. The TRSR (a GPS receiver) acquires data that complement DORIS measurements in order to determine the orbit in real time and to support precise orbit determination.

DORIS (Doppler location)

The DORIS system uses a ground network of orbitography beacons spread around the globe, which send signals at two frequencies to a receiver on the satellite. The relative motion of the satellite generates a shift in the signal's frequency (called the Doppler shift) that is measured to derive the satellite's velocity. These data are then assimilated in orbit determination models to keep permanent track of the satellite's precise position (to within three centimetres) on its orbit (Instrument supplied by CNES).

GPSDR (GPS location)

The GPSDR uses the Global Positioning System (GPS) to determine the satellite's position by triangulation, in the same way that GPS fixes are obtained on Earth. At least three GPS satellites determine a mobile object's (in this case, the satellite's) exact position at a given instant. Positional data are then integrated into an orbit determination model to track the satellite's trajectory continuously (Instrument supplied by NASA).

LRA (laser tracking)

The LRA (Laser Retroreflector Array) is an array of mirrors that provides a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit (Instrument supplied by NASA).

Further information on **Topex/Poseidon** (Aviso website)
4.1.6.1.1. Topex altimeter, or NRA

The Topex altimeter, or (206 kg including redundancy, 237 W), operating simultaneously at 13.6 GHz (Ku-band) and 5.3 GHz (C-band) was provided by NASA. It is a fifth generation altimeter, whose design is based on the previous Seasat and Geosat altimeters with significant improvements including the 5.3 GHz channel for the ionospheric measurement. It was the main sensor on the Topex/Poseidon mission. The measurements made at both frequencies were combined to obtain the altimetry height of the satellite above the sea (satellite range), wind speed modulus, significant wave height and ionospheric correction.

Function

Topex measures range (the distance from the satellite to the Earth's surface), wave height and wind speed.

Principle

The altimeter emits a radar beam that is reflected back to the antenna from the Earth's surface (see how altimetry works for details). Topex operates at two frequencies (13.6 GHz in the Ku-band and 5.3 GHz in the C-band) to determine atmospheric electron content, which affects the radar signal path delay. These two frequencies also serve to measure the amount of rain in the atmosphere.

Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitted Frequency (GHz)</td>
<td>Dual-frequency (Ku, C) - 13.575 and 5.3</td>
</tr>
<tr>
<td>Pulse Repetition Frequency (Hz)</td>
<td>4200 (Ku), 1220 (C)</td>
</tr>
<tr>
<td>Pulse duration (microseconds)</td>
<td>102.4 (Ku), 102.4 or 32 (C)</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>320 (Ku), 320 or 100 (C)</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>1.5</td>
</tr>
<tr>
<td>Antenna beamwidth (degrees)</td>
<td>1.1 (Ku), 2.7 (C)</td>
</tr>
<tr>
<td>Power (W)</td>
<td>237</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Yes</td>
</tr>
<tr>
<td>Specific features</td>
<td>Dual-frequency for ionospheric correction</td>
</tr>
</tbody>
</table>

Further information on Instrument Description: Altimeter(s) (NASA/JPL website)
4.1.6.1.2. Poseidon-1

SSALT, also called Poseidon-1, has validated the technology of a low-power (49 W), lightweight (23 kg without redundancy) altimeter for future Earth observing missions. It was supplied by the French Space Agency (CNES). It shares the same antenna as the NRA; thus only one altimeter operates at any given time (on Topex/Poseidon it operated about 10% of the time, or one cycle in ten). SSALT operates at a single frequency of 13.65 GHz (Ku-band). Its measurements give the same geophysical information as NRA’s. However since this sensor uses a single frequency, an external correction for the ionosphere must be supplied (see the DORIS instrument).

Function

Poseidon-1 measures range (the distance from the satellite to the Earth’s surface), wave height and wind speed.

Principle

The altimeter emits a radar beam that is reflected back to the antenna from the Earth’s surface (see how altimetry works for details). Poseidon-1 operates at a single frequency (13.6 GHz in the K_u band).

Technical data

Poseidon-1, or SSALT (for Solid State Altimeter), uses solid-state amplification techniques.

<table>
<thead>
<tr>
<th>Emitted Frequency (GHz)</th>
<th>Single-frequency (Ku) - 13.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Repetition Frequency (Hz)</td>
<td>1718</td>
</tr>
<tr>
<td>Pulse duration (microseconds)</td>
<td>105</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>320</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>1.5</td>
</tr>
<tr>
<td>Antenna beamwidth (degrees)</td>
<td>1.1</td>
</tr>
<tr>
<td>Power (W)</td>
<td>5</td>
</tr>
<tr>
<td>Redundancy</td>
<td>No</td>
</tr>
<tr>
<td>Specific features</td>
<td>Solid-State Power Amplifier (low power, low mass)</td>
</tr>
</tbody>
</table>

Further information on Topex/Poseidon (Aviso website)
4.1.6.1.3. TMR : Topex Microwave Radiometer

The TMR acquires measurements via three separate frequency channels to determine the path delay of the altimeter's radar signal due to atmospheric water vapour.

The TMR (50 kg including partial redundancy, 25 W) measures the microwave emissivity (brightness temperatures) of the sea surface at three frequencies (18, 21 and 37 GHz) to provide the total vapour content in the troposphere along the altimeter beam. The 21 GHz channel is the primary channel for water vapour measurement. The 18 and 37 GHz channels are respectively used to remove the effects of wind speed and cloud cover (liquid water contribution) from the water vapour measurement. Measurements are combined to obtain the error in the satellite range measurements caused by pulse delay due to water vapour, and to obtain the sigma naught correction for liquid water absorption.

Function

The TMR measures water vapour content in the atmosphere so that we can determine how it impacts radar signal propagation. Its measurements can also be used directly for studying other atmospheric phenomena, particularly rain.

Principle

The TMR is a passive receiver that collects radiation reflected by the oceans at frequencies of 18.7, 23.8 and 34 GHz.

Radiation measured by the radiometer depends on surface winds, ocean temperature, salinity, foam, absorption by water vapour and clouds, and various other factors. To determine atmospheric water vapour content accurately, we need to eliminate sea surface and cloud contributions from the signal received by the radiometer. This is why the TMR uses different frequencies, each of which is more sensitive than the others to one of these contributions. The main 23.8 GHz frequency is used to measure water vapour, the 34 GHz channel provides the correction for non-rainbearing clouds, and the 18.7 GHz channel is highly sensitive to wind-driven variations in the sea surface. By combining measurements acquired at each of these frequencies, we can extract the water vapour signal.

Further information on Instrument Description: Radiometer(s) (NASA/JPL website)
4.1.6.1.4. DORIS

The DORIS instrument onboard Topex/Poseidon provided precise orbit determination. DORIS measurements are also used for geophysical studies, in particular through the International DORIS Service (IDS). DORIS is a dual-frequency instrument able to determine atmospheric electron content.

Functions

The DORIS network of orbitography beacons and their spatial coverage

(Credits CNES)

Precise orbit determination

DORIS measurements are used for precise orbit determination (POD).

Ionospheric electron content

By measuring and comparing the path delay of signals transmitted at two separate frequencies, DORIS is able to calculate the electron content in the atmosphere. This information is then used to determine perturbations acting on the altimeter's radar signal. This function complements the Topex dual-frequency altimeter function.

Principle

DORIS orbitography beacons transmit signals at two separate frequencies (2,036.25 MHz and 401.25 MHz) to the satellite. The receiver on board the satellite analyses the received signal frequencies to calculate its velocity relative to Earth. This velocity is fed into orbit determination models to derive the satellite's position on orbit to within two centimetres on the radial component.
For Further information, see the International DORIS Service (IDS) and DORIS, the space surveyor (Aviso)
4.1.6.1.5. GPSDR GPS tracking receiver

The GPSDR (Global Positioning System Demonstration Receiver) is a tracking system that uses the GPS constellation of satellites to determine the exact position of a transmitter.

The GPSDR (28 kg without redundancy, 29 W), operating at 12,227.6 MHz and 1,575.4 MHz, receives signals from up to six GPS satellites. The GPS antenna is mounted on a long boom to reduce multipath effects which can severely corrupt the measurements. These satellite data plus GPS tracking data from ground sites allow nearly geometric solutions. Precise tracking of the satellite is made possible by using the Kalman filtering technique and a new GPS differential ranging technique.

Function

The GPSDR supports precise orbit determination by the DORIS system. It also helps to improve gravity field models and provides data for satellite positioning accurate to about 50 metres and 50 nanoseconds.

Principle

The GPSDR receives dual-frequency navigation signals continuously and simultaneously from 16 GPS satellites. It uses these signals to acquire phase measurements accurate to about one millimetre and pseudo-range measurements accurate to about 10 centimetres.

Technical data

The onboard system consists of two independent receivers operating in cold redundancy, each with an omnidirectional antenna, low-noise amplifier, quartz oscillator, sampling converter and a baseband digital processor communicating via the bus interface.

For Further information see International GPS Services.

Further information on Instrument Description: GPS (NASA/JPL website)
4.1.6.1.6. LRA: Laser Retroreflector Array

The LRA or Laser Retroreflector Array (29 kg) reflects laser signals from a network of 10 to 15 ground laser tracking stations (Satellite Laser Ranging stations, SLR) to provide tracking data for precise orbit determination and the altimeter bias calibration.

The LRA is an array of mirrors that provide a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate very precisely where the satellite is on its orbit.

Function

The LRA is used to calibrate the other location systems on the satellite (DORIS, GPSDR) with a very high degree of precision.

Principle

The LRA is a passive instrument that acts as a reference target for laser tracking measurements performed by ground stations. Laser tracking data are analysed to calculate the satellite’s altitude to within a few millimetres. However, the small number of ground stations and the sensitivity of laser beams to weather conditions make it impossible to track the satellite continuously. This is why other onboard location systems are needed.

Technical data

The retroreflectors are placed on the nadir side of the satellite. The totally passive unit consists of nine quartz corner cubes arrayed as a truncated cone, with one cube in the centre and the others arranged azimuthally around the cone. This arrangement allows laser ranging at field-of-view angles of 360 degrees in azimuth and 60 degrees in elevation around the perpendicular. The retroreflectors are optimised for a wavelength of 532 nanometres (green), offering a field of view of about 100 degrees. Topex/Poseidon's LRA was built by ITE Inc. under contract to NASA's Goddard Space Flight Center.

Further information on Instrument Description: LRA (NASA/JPL website), and ILRS (International Laser Ranging Service)
4.1.6.2. Topex/Poseidon orbit

The orbit configuration was chosen to optimise the study of temporal large-scale ocean variability and avoid aliasing different tidal constituents to the same frequency.

A high orbit altitude was also selected to minimise atmospheric drag and gravity forces acting on the satellite, and to make orbit determination easier and more accurate.

On 15 September 2002 Topex/Poseidon assumed a new orbit midway between its original ground tracks. The former Topex/Poseidon ground tracks are now overflown by Jason-1. This tandem mission demonstrated the scientific capabilities of a constellation of optimised altimetry satellites.

Orbit parameters

<table>
<thead>
<tr>
<th>Main characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-major axis</td>
<td>7714.4278 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.000095</td>
</tr>
<tr>
<td>Argument of perigee</td>
<td>270.8268°</td>
</tr>
<tr>
<td>Inclination (non-sun-synchronous)</td>
<td>66.039°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference altitude (equatorial)</td>
<td>1,336 km</td>
</tr>
<tr>
<td>Nodal period (112'42" or 1h52')</td>
<td>6,745.72 seconds</td>
</tr>
<tr>
<td>Repeat cycle</td>
<td>9.9156 days</td>
</tr>
</tbody>
</table>
The exact altitude enabling the orbit to satisfy these constraints and fly over two verification sites located in the Mediterranean Sea (Lampedusa Island, Italy) and at the Harvest oil rig platform (California, USA) was 1,336 km. An inclination of 66° was selected - i.e. the inclined orbit sampled from 66° north to 66° south - so as to cover most of the world's oceans (~ 90%). The orbit was non-sun-synchronous and prograde. A repeat period of 9.916 days was chosen (ie; the satellite passed vertically over the same location, to within 1 km, every ten days) as the best compromise between spatial and temporal resolutions. The distance between successive tracks was of the order of 315 km at the equator. The local time of successive passes shifted by nearly two hours per cycle.

A satellite orbit slowly decays due to air drag, and has long-period variability due to the Earth’s inhomogeneous gravity field, solar radiation pressure, and other lesser forces. Periodic manoeuvres are therefore required to keep the satellite on its orbit. The frequency of these manoeuvres depends primarily on the solar flux affecting the Earth's atmosphere, but there is generally expected to be one manoeuvre (or series of manoeuvres) every 40 to 200 days. The process usually takes from 20 to 60 minutes. Manoeuvres should wherever possible be performed at the end of a 10-day cycle, preferably when the satellite is overflying land in order not to disrupt precise orbit determination. Science data are not acquired when orbit maintenance manoeuvres are being performed.

Further information on Topex/Poseidon (Aviso website)
4.1.6.3. Mission's objectives

The objectives of the Topex/Poseidon mission, as announced in 1992, were:
- to study ocean circulation on a large scale including its interaction with the atmosphere, to improve our knowledge of the role of the ocean in the global climate,
- to increase our understanding of heat transport in the ocean,
- to model the tides,
- to improve the geophysical study of the marine geoid by analysing altimetry measurements and the accurate location of ground beacons,
- to calculate variation trends in mean sea level on a global scale (an indicator of the greenhouse effect).

The first research proposals for Topex/Poseidon data were therefore mainly focused on large-scale ocean circulation, with another being the modelling of tides offshore (the orbit was deliberately chosen to measure all tidal components, whichever their period), as well as several geodesy studies.

Further information on Topex/Poseidon (Aviso website)
4.2. Current altimetry missions

There are four altimetry satellites currently in service, a constellation that should not last for long:
- One satellite - Jason-1 - with a relatively short repeat cycle (10 days), able to observe the same spot on the ocean frequently but with relatively widely-spaced ground tracks (315 kilometres at the equator), in the same orbit as its predecessor, Topex/Poseidon (1992-2005).
- One satellite - Envisat - with a longer repeat cycle (35 days) but tighter ground track spacing (90 kilometres at the equator), and another one, ERS-2, on the same track with a small time-lag (but no longer any onboard recorder).
- An 'intermediate' satellite - GFO - with a repeat cycle of 17 days and 160 kilometres between ground tracks at the equator, in the same orbit as its predecessors Seasat (1978) and Geosat (1985-1990).

- ERS-2
- GFO
- Jason-1
- Envisat
4.2.1. ERS-2 mission

The ERS-2 satellite's main mission is to observe Earth, in particular its atmosphere and ocean. Built by ESA, the European Space Agency, it carries several instruments, including a radar altimeter.

ERS-2 was launched in April 1995 as the follow-on from ERS-1, with which it was used in tandem from August 1995 to June 1996, their identical orbits (35 days) having a one-day shift. Since 22 June 2003, ERS-2's onboard tape recorder used for the altimeter data has experienced a number of failures. This means that altimeter data are unavailable except for when the satellite is within visibility of ESA's ground stations over Europe, North Atlantic, the Arctic and western North America.

Satellite | ERS-2
Launched | 21 April 1995
Mission: | Observe Earth and its environment
Altitude: | 785 km
Inclination: | 98.52°

Further information on:

- Onboard instruments
- Orbit
- ERS missions Home Page (ESA website),
- ERS data processing (Cersat website)
4.2.1.1. Instruments

The ERS satellites carry instrumentation consisting of a core set of active microwave sensors supported by additional, complementary instruments:
- AMI - active microwave instrument consisting of a synthetic aperture radar (SAR) and a wind scatterometer
- RA - radar altimeter
- ATSR - along-track scanning radiometer
- Gome (ERS-2) - global ozone monitoring experiment
- MWS - microwave sounder
- PRARE - precise range and range rate equipment
- LRR - laser reflector

The satellite concept is based on reusing the Multi-mission Platform, developed within the French SPOT programme. This platform provides the major services for the satellite and payload operation, in particular attitude and orbit control, power supply, monitoring and control of payload status, telecommunications with the ground segment.

RA altimeter

The Radar Altimeter (RA) is a Ku-band (13.8 GHz) nadir-pointing active microwave sensor designed to measure the return trip time for echoes from ocean and ice surfaces. Functioning in one of two operational modes (ocean or ice) the Radar Altimeter provides information on significant wave height, surface wind speed, sea surface elevation, which relates to ocean currents, the surface geoid and tides, and various parameters over sea ice and ice sheets.

MicroWave Sounder

The Along-Track Scanning Radiometer (ATSR) combines an infrared radiometer and a microwave sounder for measuring sea surface temperature, cloud top temperature, cloud cover and atmospheric water vapour.
content. This is used to correct altimetry data from path delay due to atmospheric water.

Further information

Location systems

The ERS sensor location system includes two instruments - the Precise Range and Range-rate Equipment (PRARE) and the Laser Retroreflectors (LRR) to provide precise orbit determination for the referencing of height measurements made by the Radar Altimeter. The PRARE has been non-operational since launch, but a description of it is included here for completeness.

PRARE

The Precise Range and Range-rate Equipment (PRARE) is included for the accurate determination of the satellite’s position and orbit characteristics, and for precise position determination (geodetic fixing).

Further information

LRR

The LRR is highly accurate but it requires ground stations that are complex to operate, and its use can be restricted by adverse weather conditions. It is used to calibrate the other location system so that the satellite orbit can be determined as accurately as possible.

Further information

Further information on ERS instruments (ESA website)
4.2.1.1. RA

The Radar Altimeter (RA) is a Ku-band (13.8 GHz) nadir-pointing active microwave sensor designed to measure the return trip time for echoes from ocean and ice surfaces. Functioning in one of two operational modes (ocean or ice) the Radar Altimeter provides information on significant wave height, surface wind speed, sea surface elevation (relating to ocean currents, the surface geoid and tides) and various parameters over sea ice and ice sheets.

Function

The Radar Altimeter is a Ku-band (13.8 GHz) nadir-pointing active microwave sensor designed to measure the time return echoes from ocean and ice surfaces. Functioning in one of two operational modes (ocean or ice) the Radar Altimeter provides information on significant wave height; surface wind speed; sea surface elevation, which relates to ocean currents, the surface geoid and tides; and various parameters over sea ice and ice sheets.

Principle

The altimeter emits a radar beam that is reflected back to the antenna from the Earth's surface. RA operates at a single frequency (13.6 GHz in the K_u-band).

The Radar Altimeter operates by timing the two-way delay for a short duration radio frequency pulse, transmitted vertically downwards. The level of accuracy required for range measurement (greater than 10 cm) calls for a pulse compression (full deramp) technique. In ocean mode a chirped pulse of 20 microseconds duration is generated with a bandwidth of 330 MHz. For tracking in ice mode an increased dynamic range is used, obtained by reducing the chirp bandwidth by a factor of four to 82.5 MHz, though this also results in a coarser resolution (see [how altimetry works](#) for details).

Technical data

<table>
<thead>
<tr>
<th>Emitted Frequency (GHz)</th>
<th>Single-frequency (Ku) - 13.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Repetition Frequency (Hz)</td>
<td>1020</td>
</tr>
<tr>
<td>Pulse duration (microseconds)</td>
<td>20</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>330 and 82.5</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>1.2</td>
</tr>
<tr>
<td>Antenna beamwidth (degrees)</td>
<td>1.3</td>
</tr>
<tr>
<td>Power (W)</td>
<td>50</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Yes</td>
</tr>
<tr>
<td>Specific features</td>
<td>2 bandwidths for ocean and ice measurements</td>
</tr>
</tbody>
</table>

Further information on [RA instrument](#) (ESA website)
4.2.1.1.2. MWS: Microwave Sounder

The main objective of the microwave radiometer (MWS) is to measure the integrated atmospheric water vapour column and cloud liquid water content, which are used as correction terms for the radar altimeter signal. In addition, MWS measurement data are useful for determining surface emissivity and soil moisture over land, for surface energy budget investigations to support atmospheric studies, and for ice characterisation.

Function

The MWS measures water vapour content in the atmosphere so that we can determine how it impacts radar signal propagation. Its measurements can also be used directly for studying precipitable water and cloud liquid content along the satellite track.

Principle

The MWS is a passive receiver that collects radiation reflected by the oceans at frequencies of 23.8 GHz and 36.5 GHz.

Radiation measured by the radiometer depends on surface winds, ocean temperature, salinity, foam, absorption by water vapour and clouds, and various other factors. To determine atmospheric water vapour content accurately, we need to eliminate sea surface and cloud contributions from the signal received by the radiometer. That is why the MWS uses different frequencies, each of which is more sensitive than the others to one of these contributions. The frequencies 23.8 GHz and 36.5 GHz are the result of a trade-off between instrument (reflector) size required to cover a horizontal area on the Earth's surface comparable to the altimeter beam, and the maximum sensitivity to water vapour change in the atmosphere. These frequencies are used to measure the strength of the weak water-vapour emission-line at 22 GHz. In order to eliminate microwave radiation emitted by the Earth's surface, differential measurements at two frequencies must be made. The optimal choice is to use one frequency at the peak of the line and one at the lowest point.

With one feed horn for each frequency, the MWS points via an offset reflector at an angle close to nadir. The instrument is configured in such a way that the 23.8 GHz channel is pointing in the forward direction, the 36.5 GHz channel in the backward direction, with a footprint of about 20 km diameter for each beam.

Further information on MWS instrument (ESA website)
4.2.1.1.3. PRARE

Precise Range and Range-rate Equipment (PRARE) is included for the accurate determination of the satellite’s position and orbit characteristics, and for precise position determination (geodetic fixing). It is a satellite tracking system which provides two-way microwave range and range-rate measurements to ground based transponder stations.

The PRARE system was developed by the Institut für Navigation (INS) at the University of Stuttgart, Kayser-Threde GmbH, Munich and the Deutsches Geodätisches Forschungsinstitut, Munich, as a German national experiment.

Function

The system was designed to:
* provide, in all weather conditions, precise satellite-to-ground or satellite-to-satellite range and range-rate information,
* guarantee very reliable measurements through cross-checks and calibration procedures,
* ensure highly effective operation of the ground segment through data collection and dissemination via the satellite itself, and control of the global network via one central ground station,
* allow rapid generation of products at an archiving, processing and distribution centre.

Principle

The PRARE measurement principle involves two signals sent from the sensor on board the satellite, one signal in the S-band (2.2 GHz) and the other in the X-band (8.5 GHz). Both signals are modulated with a PN code (pseudo-random noise). The time delay in the reception of the two simultaneously-emitted signals is measured at the ground station with great accuracy (<1 ns) and retransmitted to the on-board memory for ionospheric data correction. Collection of meteorological data by the ground station allows corrections to be applied for tropospheric refraction.

Further information on [PRARE instrument](https://www.esa.int) (ESA website)
4.2.1.1.4. Laser RetroReflector

The LRR is an array of mirrors that provides a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit.

Function

A laser retroreflector is attached to a mount on the nadir panel close to the RA antenna. It has two functions:

- support-to-satellite ranging,
- RA altitude calibration.

The LRR is a passive device which is used as a reflector by ground-based SLR (Satellite Laser Ranging) stations using high-power pulsed lasers. In the case of ERS-1, tracking using the LRR is mainly performed by the International Laser Ranging Service (ILRS).

The ILRS provides tracking for the satellite from its global network of laser ranging stations. Laser stations fire short laser bursts at ERS and time the interval before the pulse is reflected back. These ILRS stations are relatively few, but because their positions are very accurately known, they provide a set of independent reference measurements of ERS’s position, which contribute to the satellite’s precise orbit determination.

Principle

The operating principle of the LRR is therefore to measure on the ground the return trip time of laser pulses reflected from an array of corner cubes mounted on the Earth-facing side of the satellite. The corner cubes ensure that the laser beam is reflected back parallel to the incident beam. The detailed design of the cubes includes a compensation for the aberration of the laser beam caused by the satellite’s velocity: the satellite moves almost 40 metres between the emission and reception of the laser pulse from the SLR station, and this is compensated for by slight nonparallelism of the reflected beam.

The corner cubes are made of the highest-quality fused silica and work in the visible spectrum. Their performance is optimised at the two wavelengths (694 nm and 532 nm) commonly used in SLR stations. The corner cubes are symmetrically-mounted on a hemispherical surface with one nadir-pointing corner cube in the centre, surrounded by an angled ring of eight corner cubes.

This allows laser ranging in the field of view angles of 360° in azimuth and 60° in elevation around the perpendicular to the satellite’s -Zs Earth-facing panel (positioned on the axis at point -Zs with respect to the satellite’s centre of mass).

Further information on ERS (ESA website)
4.2.1.2. ERS-2 orbit

To carry out its mission ERS-2’s orbit must enable its instruments to scan along predetermined paths designed to give optimum coverage for a set number of orbits. To achieve this, ERS-2 is a three-axis-stabilised, Earth-pointing satellite in yaw steering mode (YSM). The elliptical orbit is sun-synchronous, near-polar, with a mean altitude of 785 km, an inclination of 98.5° and a local solar time at the descending node of 10:30 a.m.

Orbit parameters

35-day orbit

<table>
<thead>
<tr>
<th>Main characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-major axis</td>
<td>7159.5 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.0001042</td>
</tr>
<tr>
<td>Argument of perigee</td>
<td>92.4836°</td>
</tr>
<tr>
<td>Inclination (sun-synchronous)</td>
<td>98.55°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference altitude (equatorial)</td>
<td>799.8 km</td>
</tr>
<tr>
<td>Nodal period</td>
<td>50 min 25.5 s</td>
</tr>
<tr>
<td>Repeat cycle</td>
<td>35 days</td>
</tr>
<tr>
<td>Number of passes per cycle</td>
<td>1002</td>
</tr>
<tr>
<td>Ground track separation at Equator</td>
<td>80 km</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Acute angle at Equator crossings</td>
<td></td>
</tr>
<tr>
<td>Longitude at Equator of pass 1</td>
<td></td>
</tr>
<tr>
<td>Orbital velocity</td>
<td>7.45 km/s</td>
</tr>
<tr>
<td>Ground scanning velocity</td>
<td></td>
</tr>
</tbody>
</table>

Further information on [ERS](https://www.esa.int/ERS) (ESA website)
4.2.2. The Geosat Follow-On (GFO) mission

GFO, Geosat Follow-On was launched in February 1998. Its mission is to provide real-time ocean topography data to the US Navy. Scientific and commercial users have access to these data through NOAA (National Oceanic and Atmospheric Administration). Its primary payload is a radar altimeter.

GFO follows the 17-day repetitive orbit of Geosat.

Further information on:

- mission and operations (US Navy website)
- data (NOAA website)
4.2.3. The Jason-1 mission

Jason-1 is the follow-on to Topex/Poseidon, whose main features it has inherited (orbit, instruments, measurement accuracy, etc.), and is being developed jointly by CNES and NASA. Satellite control and data processing operations are performed by a new ground segment.

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Jason-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launched</td>
<td>7 December 2001</td>
</tr>
<tr>
<td>Mission</td>
<td>Measure sea surface height</td>
</tr>
<tr>
<td>Altitude</td>
<td>1336 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>66° (non-sun-synchronous)</td>
</tr>
</tbody>
</table>

Further information on:

- Onboard instruments
- Orbit
- Mission's objectives
- Ground segment

- Jason-1 (Aviso/CNES)
- Ocean surface topography from space (NASA/JPL)
- Physical Oceanography Distributed Active Archive Center (NASA/JPL)
- Jason-1 and 2, the ocean observatory (CNES)
4.2.3.1. Instruments

Jason-1 is carrying a payload of five instruments: the Poseidon-2 altimeter, the mission's main instrument, which measures range; the JMR radiometer, which measures perturbations due to atmospheric water vapour; and three location systems: DORIS, LRA and TRSR.

Poseidon-2 altimeter

Poseidon-2 is the mission's main instrument, derived from the experimental Poseidon-1 altimeter on Topex/Poseidon. It is a compact, low-power, low-mass instrument offering a high degree of reliability. Poseidon-2 is a radar altimeter that emits pulses at two frequencies (13.6 and 5.3 GHz, the second frequency is used to determine the electron content in the atmosphere) and analyses the return signal reflected by the surface. The signal's round-trip time is estimated very precisely in order to calculate the range, after applying the necessary corrections (Instrument supplied by CNES).

Further information

JMR (Jason-1 Microwave Radiometer)

This instrument measures radiation from the Earth's surface at three frequencies (18, 21 and 37 GHz). Measurements acquired at each frequency are combined to determine atmospheric water vapour and liquid water content. Once the water content is known, we can determine the correction to be applied for radar signal path delays (Instrument supplied by NASA).

Further information

Location systems

The location systems onboard Jason-1 complement each other to measure the satellite's position on orbit to within two centimetres on the radial component. The is highly accurate but it requires ground stations that are complex to operate, and its use can be restricted by adverse weather conditions. It is used to calibrate the
other two location systems so that the satellite orbit can be determined as accurately as possible. The TRSR (a GPS receiver) acquires data that complement DORIS measurements in order to determine the orbit in real time and to support precise orbit determination.

DORIS (Doppler location)

The DORIS system uses a ground network of orbitography beacons spread around the globe, which send signals at two frequencies to a receiver on the satellite. The relative motion of the satellite generates a shift in the signal's frequency (called the Doppler shift) that is measured to derive the satellite's velocity. These data are then assimilated in orbit determination models to keep permanent track of the satellite's precise position (to within three centimetres) on its orbit (Instrument supplied by CNES).

Further information

TRSR (GPS location)

The TRSR uses the Global Positioning System (GPS) to determine the satellite's position by triangulation, in the same way that GPS fixes are obtained on Earth. At least three GPS satellites determine a mobile object's (in this case, the satellite's) exact position at a given instant. Positional data are then integrated into an orbit determination model to track the satellite's trajectory continuously (Instrument supplied by NASA).

Further information

LRA (laser tracking)

The LRA (Laser Retroreflector Array) is an array of mirrors that provide a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit (Instrument supplied by NASA).

Further information

Further information on Jason-1 (Aviso website)
4.2.3.1.1. Poseidon-2

The Poseidon-2 altimeter is the main instrument on the Jason-1 mission. Derived from the Poseidon-1 altimeter on Topex/Poseidon, it measures sea level, wave heights and wind speed. It operates at two frequencies and is also able to estimate atmospheric electron content.

Function

Poseidon-2 measures range (the distance from the satellite to the Earth's surface), wave height and wind speed.

Principle

The altimeter emits a radar beam that is reflected back to the antenna from the Earth's surface (see how altimetry works for details). Poseidon-2 operates at two frequencies (13.6 GHz in the Ku band and 5.3 GHz in the C band) to determine atmospheric electron content, which affects the radar signal path delay. These two frequencies also serve to measure the amount of rain in the atmosphere.

Technical data

Poseidon-2, or SSALT (for Solid State ALTimeter), uses solid-state amplification techniques.

<table>
<thead>
<tr>
<th>Emitted Frequency (GHz)</th>
<th>Dual-frequency (Ku, C) - 13.575 and 5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Repetition Frequency (Hz)</td>
<td>2060 interlaced (3Ku-1C-3Ku)</td>
</tr>
<tr>
<td>Pulse duration (microseconds)</td>
<td>105</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>320 (Ku and C)</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>1.2</td>
</tr>
<tr>
<td>Antenna beamwidth (degrees)</td>
<td>1.28 (Ku), 3.4 (C)</td>
</tr>
<tr>
<td>Power (W)</td>
<td>7</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Yes</td>
</tr>
<tr>
<td>Specific features</td>
<td>Solid-State Power Amplifier. Dual-frequency for ionospheric correction, High resolution in C band (320 MHz)</td>
</tr>
</tbody>
</table>

Further information on Jason-1 (Aviso website)
4.2.3.1.2. JMR : Jason-1 Microwave Radiometer

The JMR acquires measurements via three separate frequency channels to determine the path delay of the altimeter’s radar signal due to atmospheric water vapour.

Function

The JMR measures water vapour content in the atmosphere so that we can determine how it impacts radar signal propagation. Its measurements also can be used directly for studying other atmospheric phenomena, particularly rain.

Principle

The JMR is a passive receiver that collects radiation reflected by the oceans at frequencies of 18.7, 23.8 and 34 GHz. Radiation measured by the radiometer depends on surface winds, ocean temperature, salinity, foam, absorption by water vapour and clouds, and various other factors. To determine atmospheric water vapour content accurately, we need to eliminate sea surface and cloud contributions from the signal received by the radiometer. This is why the JMR uses different frequencies, each of which is more sensitive than the others to one of these contributions. The main 23.8 GHz frequency is used to measure water vapour; the 34 GHz channel provides the correction for non-rainbearing clouds, and the 18.7 GHz channel is highly sensitive to wind-driven variations in the sea surface. By combining measurements acquired at each of these frequencies, we can extract the water vapour signal.

Further information on Instrument Description: Radiometer(s) (NASA/JPL website)
4.2.3.1.3. DORIS

The DORIS instrument onboard Jason-1 provides real-time location and precise orbit determination. DORIS measurements are also used for geophysical studies, in particular through the International DORIS Service (IDS). DORIS is a dual-frequency instrument able to determine atmospheric electron content.

Function

Real-time location: Diode

The Diode onboard navigator locates the satellite on orbit in real time. This information is essential for providing altimetry data in real time or near-real time.

Precise orbit determination

DORIS measurements are used for precise orbit determination (POD).

Ionospheric electron content

By measuring and comparing the path delay of signals transmitted at two separate frequencies, DORIS is able to calculate the electron content in the atmosphere. This information is then used to determine perturbations acting on the altimeter's radar signal. This function complements the dual-frequency altimeter function.

Principle

DORIS orbitography beacons transmit signals at two separate frequencies (2,036.25 MHz and 401.25 MHz) to the satellite. The receiver on board the satellite analyses the received signal frequencies to calculate its velocity relative to Earth. This velocity is fed into orbit determination models to derive the satellite's position on orbit to within two centimetres on the radial component.
For Further information, see the International DORIS Service (IDS) and DORIS, the space surveyor (Aviso)
4.2.3.1.4. TRSR GPS tracking receiver

The TRSR (Turbo Rogue Space Receiver) is a tracking system that uses the GPS constellation of satellites to determine the exact position of a transmitter.

Function

The TRSR supports precise orbit determination by the DORIS system. It also helps to improve gravity field models and provides data for satellite positioning accurate to about 50 metres and 50 nanoseconds.

Principle

The TRSR receives dual-frequency navigation signals continuously and simultaneously from 16 GPS satellites. It uses these signals to acquire phase measurements accurate to about one millimetre and pseudo-range measurements accurate to about 10 centimetres.

Technical data

The onboard system consists of two independent receivers operating in cold redundancy, each with an omnidirectional antenna, low-noise amplifier, quartz oscillator, sampling converter and a baseband digital processor communicating via the bus interface.

For Further information see [International GPS Services](http://www.gps.gov/)

Further information on [Instrument Description: GPS](http://nasa.jpl.nasa.gov/instruments/)

4.2.3.1.5. LRA: Laser Retroreflector Array

The LRA is an array of mirrors that provide a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate very precisely where the satellite is on its orbit.

Function

The LRA is used to calibrate the other location systems on the satellite (DORIS, TRSR) with a very high degree of precision.

Principle

The LRA is a passive instrument that acts as a reference target for laser tracking measurements performed by ground stations. Laser tracking data are analysed to calculate the satellite’s altitude to within a few millimetres. However, the small number of ground stations and the sensitivity of laser beams to weather conditions make it impossible to track the satellite continuously. That is why other onboard location systems are needed.

Technical data

The retroreflectors are placed on the nadir side of the satellite. The totally passive unit consists of nine quartz corner cubes arrayed as a truncated cone, with one cube in the centre and the others arranged azimuthally around the cone. This arrangement allows laser ranging at field-of-view angles of 360 degrees in azimuth and 60 degrees in elevation around the perpendicular. The retroreflectors are optimised for a wavelength of 532 nanometres (green), offering a field of view of about 100 degrees. Jason-1’s LRA was built by ITE Inc. under contract to NASA’s Goddard Space Flight Center.
Further information on Instrument Description: LRA (NASA/JPL website), and ILRS (International Laser Ranging Service)
4.2.3.2. Jason-1 orbit

Jason-1’s orbit is identical to that of Topex/Poseidon. It is optimised to study large-scale ocean variability and to provide coverage of 90% of the world’s oceans over a ten-day cycle.

Choice of orbit

Jason-1’s high altitude (1,336 kilometres) reduces interactions with the Earth's atmosphere and gravity field to a minimum, thus making orbit determination easier and more precise. The orbit inclination of 66 degrees North and South enables the satellite to cover most of the globe's unfrozen oceans. The orbit's repeat cycle is just under 10 days (9.9156 days to be precise, i.e. 10 days minus two hours) - in other words, the satellite passes over the same point on the Earth's surface (to within one kilometre) every ten days. This cycle is a trade-off between spatial and temporal resolution designed for the study of large-scale ocean variability. The fact that the orbit is prograde and not sun-synchronous also avoids aliasing of different tide components at the same frequency.

Furthermore, using the same orbit as Topex/Poseidon ensures better intercalibration and data continuity. The orbit is also designed to pass over two dedicated ground calibration sites: Cap Senetosa in Corsica and the Harvest oil rig platform in California, USA.

Manoeuvres

A satellite’s orbit parameters tend to change over time as a result of atmospheric drag. In the long term, more or less periodic variations also occur due to instabilities in the Earth's gravity field, solar radiation pressure and other forces of smaller magnitude.

Orbit manoeuvres are performed every 40 to 200 days. Intervals between manoeuvres depend chiefly on solar flux and each manoeuvre lasts from 20 to 60 minutes. Wherever possible, they are performed at the end of the orbit cycle, and above solid earth, so that lost data acquisition time is reduced to a minimum.
Orbit parameters

<table>
<thead>
<tr>
<th>Main characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-major axis</td>
<td>7714.4278 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.000095</td>
</tr>
<tr>
<td>Inclination (non-sun-synchronous)</td>
<td>66.039°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference altitude (equatorial)</td>
<td>1,336 km</td>
</tr>
<tr>
<td>Nodal period</td>
<td>6,745.72 seconds (112'42" or 1h52')</td>
</tr>
<tr>
<td>Repeat cycle</td>
<td>9.9156 days</td>
</tr>
<tr>
<td>Number of passes per cycle</td>
<td>254</td>
</tr>
<tr>
<td>Ground track separation at Equator</td>
<td>315 km</td>
</tr>
<tr>
<td>Acute angle at Equator crossings</td>
<td>39.5°</td>
</tr>
<tr>
<td>Longitude at Equator of pass 1</td>
<td>99.9242°</td>
</tr>
<tr>
<td>Orbital velocity</td>
<td>7.2 km/s</td>
</tr>
<tr>
<td>Ground scanning velocity</td>
<td>5.8 km/s</td>
</tr>
</tbody>
</table>

Further information on [Jason-1](http://www.aviso.altimetry.fr) (Aviso website)
4.2.3.3. Mission's objectives

Is the Earth getting warmer? What do the ocean currents hold in store for tomorrow? What are the underlying processes driving ocean movements? The Jason series of satellites will sustain radar altimetry observations in the coming decades, providing continuous data on sea surface height (SSH) accurate to within a few centimetres all over the globe, to tell us more about variations in surface and deep-water ocean circulation. Designed to follow on from Topex/Poseidon, Jason-1’s instruments and data processing systems have drawn extensively on the lessons learned from its predecessor. Jason-1 is a true ocean observatory that will supply SSH and sea-state measurements in near-real time to an international user community.

Oceanography and ocean forecasting

Ocean variability is the central focus of the Jason-1 mission. The satellite's orbit - identical to Topex/Poseidon - has been defined to cover 90% of the world's ice-free oceans every ten days. Real-time data delivery will make it possible to issue ocean bulletins in much the same way as we do weather forecasts today.

Climatology and climate prediction

Altimetry data yield vital information for studying and predicting climate, in particular climatic phenomena such as El Niño. Jason-1’s ability to measure mean sea level with millimetre accuracy will be a key asset for monitoring climate change.

Marine meteorology
Jason-1 delivers sea-state data (wave heights and wind speed) within three hours. This information will help us to better understand and predict weather conditions over the oceans.

Geophysics

The Earth’s gravity field affects sea level. By measuring the ocean’s dynamic topography, we can learn more about plate tectonics, bottom topography, movements of the Earth's mantle and many other geophysical phenomena. Altimetry data are also used to study ice, lakes and rivers, and relief in desert regions.

See the scientific objectives in Y. Ménard, L.L. Fu, 2000: Jason-1, on the tracks of Topex/Poseidon, Aviso Newsletter, 7, January 2000.

Further information on Jason-1 (Aviso website)
4.2.3.4. Ground segment

The Jason-1 ground segment is made up of three components providing the human (teams) and equipment resources required to ensure the mission’s success:

- The Proteus Generic Ground Segment (PGGS, based in Toulouse, France)
- The Project Operation Control Center (POCC, based in Pasadena, California, USA)
- The SSALTO multimission ground segment (based in Toulouse, France).

Mission operations

This comprises the Proteus Generic Ground Segment (PGGS) located in Toulouse, France, and the Project Operations Control Center (POCC) located in Pasadena, Ca, USA.

PGGS

The Proteus Generic Ground Segment provides the necessary capability for operating a Proteus spacecraft. It includes an Earth terminal, a command and control centre and a data communications network. Proteus adapted its facilities to meet Jason-1’s requirements. It was used to perform satellite operations during the early phase of the mission (launch, station acquisition, in-orbit acceptance) and then performed spacecraft analysis and navigation functions when the POCC took over routine satellite operations. The PGGS is broken down into three main components: the TTCET Earth terminal, the command control centre (CCC) and the data communications network (DCN). Development of the generic product and the specific adaptation to the Jason-1 mission were managed by the same team.

POCC

The POCC provided the capability for operating Jason-1 during its routine phase, including 1) real-time telemetry and command (JTCC), 2) sequence generation (JSEQ), 3) Earth terminal (ET), 4) science processing and distribution (JSDS), and 5) data archiving (PODAAC) functions. It was derived from the
SSALTO

The SSALTO multimission ground segment (Segment Sol multimissions d’ALTimétrie, d’Orbitographie et de localisation précise) encompasses ground support facilities for controlling the DORIS and Poseidon instruments, processing data from DORIS and the altimeters onboard Topex/Poseidon, Jason-1 and Envisat-1, and providing user services and expert altimetry support.

SSALTO was designed by CNES, the French space agency, in partnership with its subsidiary CLS and local French industry. SSALTO serves as a common ground segment for the DORIS/Spot, DORIS/Envisat, Topex/Poseidon, Jason-1 and Envisat missions. It thus responds to a growing commonality of user needs and supports the continued operation of DORIS instruments and altimetry payloads flying simultaneously on different satellites.

SSALTO encompasses the resources for:

- controlling onboard DORIS and Poseidon instruments, and the DORIS orbitography beacon network (CCI)
- obtaining precision orbits (POD)
- processing altimeter and radiometer data (CMA)
- providing user services, and archiving and managing data (Aviso)

The CMA (Multi-mission Altimetry Centre) processes altimetry data from Jason-1 and Envisat, and from SSALTO components that control the instruments (CCI) and determine precise orbits. Other components process Topex/Poseidon and DORIS data from other satellites (SPOT, Envisat) and distribute data (Aviso).

See also S. Coutin-Faye et al., 2000: SSALTO: a new ground segment for a new generation of altimetry satellites, Aviso Newsletter, n°7 January 2000.
4.2.4. The Envisat mission

Envisat (Environmental Satellite) is the follow-on to ERS-1 and ERS-2. Devoted to environmental studies, and climate change in particular, its mission is to observe Earth’s atmosphere and surface. Built by ESA, the European Space Agency, Envisat is carrying ten complementary instruments for observing parameters ranging from the marine geoid to high-resolution gaseous emissions. Among these instruments are a radar altimeter, and the DORIS orbitography and precise location system.

Envisat's orbital period is 35 days, like ERS-2 and some of the ERS-1 phases. As it is integrated in new international climate study programmes such as GOOS and GODAE. Envisat thus forms part of the coming operational era in oceanography, offering near-real-time data access.

Further details on:

- Onboard instruments
- Orbit
- Mission's objectives
- Ground segment

Further information on the Envisat mission web (ESA website)
4.2.4.1. Envisat instruments

RA-2 altimeter

The Radar Altimeter 2 (RA-2) is an instrument for determining the two-way delay of the radar echo from the Earth’s surface to a very high precision: less than a nanosecond. It also measures the power and shape of the reflected radar pulses. The RA-2 is derived from the ERS-1 and 2 radar altimeters, providing improved measurement performance and new capabilities. Operating over oceans, its measurements are used to determine the ocean topography, thus supporting research into ocean circulation, bathymetry and marine geoid characteristics. Furthermore, the RA-2 is able to map and monitor sea ice, polar ice sheets and most land surfaces. Measurement of the radar echo’s power and shape enables wind speed and significant wave height at sea to be determined, thus supporting weather and sea state forecasting.

[Further information](#)

MWR (Microwave Radiometer)

The main objective of the microwave radiometer (MWR) is to measure the integrated atmospheric water vapour column and cloud liquid water content, which are used as correction terms for the radar altimeter signal. Once the water content is known, we can determine the correction to be applied for radar signal path delays for the altimeter. In addition, MWR measurement data are useful for determining surface emissivity and soil moisture over land, for surface energy budget investigations to support atmospheric studies, and for ice characterisation.

[Further information](#)

Location systems
The location systems onboard Envisat complement each other to measure the satellite's position on orbit to within two centimetres on the radial component. The LRR is highly accurate, but it requires ground stations that are complex to operate, and its use can be restricted by adverse weather conditions. It is used to calibrate DORIS so that the satellite orbit can be determined as accurately as possible. DORIS measurements determine the orbit in real time to support precise orbit determination.

DORIS (Doppler location)

The DORIS system uses a ground network of orbitography beacons spread around the globe, which send signals at two frequencies to a receiver on the satellite. The relative motion of the satellite generates a shift in the signal's frequency (called the Doppler shift) that is measured to derive the satellite's velocity. These data are then assimilated in orbit determination models to keep permanent track of the satellite's precise position (to within three centimetres) on its orbit.

Further information

LRR (laser tracking)

The LRR (Laser Retroreflector Array) is an array of mirrors that provides a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit.

Further information

Further information on the [instruments](http://www.esa.int) (ESA website)
4.2.4.1.1. RA-2

The Radar Altimeter 2 (RA-2) is an instrument for determining the two-way delay of the radar echo from the Earth's surface to a very high precision: less than a nanosecond. It also measures the power and shape of the reflected radar pulses. The RA-2 is derived from the ERS-1 and 2 radar altimeters, providing improved measurement performance and new capabilities.

Function

Operating over oceans, RA-2 measurements are used to determine the ocean topography, thus supporting research into ocean circulation, bathymetry and marine geoid characteristics. Furthermore, RA-2 is able to map and monitor sea ice, polar ice sheets and most land surfaces. Measurement of the radar echo power and shape enables wind speed and significant wave height at sea to be determined, thus supporting weather and sea state forecasting.

Principle

The altimeter emits a radar beam that is reflected back to the antenna from the Earth's surface (see [how altimetry works](#) for details). RA-2 operates at two frequencies (13.57 GHz in the Ku-band and 3.2 GHz in the S-band) to determine atmospheric electron content, which affects the radar signal path delay. These two frequencies can also serve to measure the amount of rain in the atmosphere.

Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitted Frequency (GHz)</td>
<td>Dual-frequency (Ku, S) - 13.575 and 3.2</td>
</tr>
<tr>
<td>Pulse Repetition Frequency (Hz)</td>
<td>1795 (Ku), 449 (S)</td>
</tr>
<tr>
<td>Pulse duration (microseconds)</td>
<td>20</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>320, 80 and 20 (Ku) - 160 (S)</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>1.2</td>
</tr>
<tr>
<td>Antenna beamwidth (degrees)</td>
<td>1.29 (Ku), 5.5 (S)</td>
</tr>
<tr>
<td>Power (W)</td>
<td>161</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Yes</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>Specific features</td>
<td>Dual-frequency for ionospheric correction, 3 bandwidths in Ku-band</td>
</tr>
</tbody>
</table>

Further information on the [RA2 instrument](https://www.esa.a) (ESA website)
4.2.4.1.2. MWR: Microwave Radiometer

The main objective of the microwave radiometer (MWR) is to measure the integrated atmospheric water vapour column and cloud liquid water content, which are used as correction terms for the radar altimeter signal. In addition, MWR measurement data are useful for determining surface emissivity and soil moisture over land, for surface energy budget investigations to support atmospheric studies, and for ice characterisation.

The Envisat MWR has evolved from the instruments previously flown on ERS-1 and ERS-2. It is a dual-channel nadir-pointing radiometer, operating at frequencies of 23.8 GHz and 36.5 GHz. For Envisat the design of the MWR had to be modified in some areas compared to its ERS predecessors, in order to comply with the different platform and mission requirements.

Function

The MWR measures water vapour content in the atmosphere so that we can determine how it impacts radar signal propagation. Its measurements also can be used directly for studying precipitable water and cloud liquid content along the satellite track.

Principle

The MWR is a passive receiver that collects radiation reflected by the oceans at frequencies of 23.8 GHz and 36.5 GHz.

Radiation measured by the radiometer depends on surface winds, ocean temperature, salinity, foam, absorption by water vapour and clouds, and various other factors. To determine atmospheric water vapour
content accurately, we need to eliminate sea surface and cloud contributions from the signal received by the radiometer. This is why the MWR uses different frequencies, each of which is more sensitive than the others to one of these contributions. The frequencies 23.8 GHz and 36.5 GHz are the result of a trade-off between instrument (reflector) size required to cover a horizontal area on the Earth's surface comparable to the RA-2 beam, and the maximum sensitivity to water vapour change in the atmosphere. These frequencies are used to measure the strength of the weak water-vapour emission-line at 22 GHz. In order to eliminate microwave radiation emitted by the Earth's surface, differential measurements at two frequencies must be made. The optimal choice is to use one frequency at the peak of the line and one at the lowest point.

With one feed horn for each frequency, the MWR points via an offset reflector at an angle close to nadir. The instrument is configured in such a way that the 23.8 GHz channel is pointing in the forward direction, the 36.5 GHz channel in the backward direction, with a footprint of about 20 km diameter for each beam.

Further information on the MWR instrument (ESA website)
4.2.4.1.3. DORIS

The DORIS instrument onboard Envisat provides real-time location and precise orbit determination. DORIS measurements are also used for geophysical studies, in particular through the International DORIS Service (IDS). DORIS is a dual-frequency instrument able to determine atmospheric electron content.

To perform its missions of satellite orbit restitution and ground beacon location, the DORIS system comprises an onboard package, a network of beacons, and the DORIS Control and Data Processing Centre. For operational aspects, the DORIS control centre provides an interface with the satellite flight operation segment. The orbit determination beacons are deployed throughout a dense worldwide network. This network is deployed and maintained by the IGN (French national geographic institute). The time reference for the system is provided by master beacons located in Toulouse, France and Kourou, French Guiana, which are connected to atomic clocks. The DORIS onboard instrument package consists of:
- a redundant receiver with two receiving chains;
- an ultrastable crystal oscillator (USO) identical to the USOs employed in the DORIS ground segment;
- an omnidirectional dual-frequency antenna;
- an Instrument Control Unit (shared with the MWR).

The receivers can track two beacons simultaneously. The Doppler measurements are also processed on board to obtain real time orbit data with lower accuracy.

Function

DORIS is based upon the accurate measurement of the Doppler shift of radio frequency signals transmitted from ground beacons and received on board the satellite. Measurements are made at two frequencies: 2.03625 GHz for precise Doppler measurements and 401.25 MHz for ionospheric correction of the propagation delay. The 401.25 MHz frequency is also used for measurement time-tagging and auxiliary data transmission. The selection of an uplink-only system allows fully automated operation of the beacons and easy communication links for the overall system, data being centralised through the satellite and its ground segment to the DORIS data processing centre. The control and data processing centre is located in Toulouse, France, and operated by CLS.

Precise orbit determination

The DORIS network of orbitography beacons and their spatial coverage from Envisat's orbit
DORIS measurements are used for precise orbit determination (POD). Onboard measurements of the Doppler shift are performed every 10 seconds. The resulting radial velocity values (accurate to the order of 0.4 mm/s) are used on the ground in combination with a dynamic model of the satellite's trajectory to perform precise orbit determination with an accuracy of greater than 5 cm in altitude. These orbit data are available with a time lag of 1.5 months, with the delay being mainly due to the availability of external data, such as solar flux.

Real-time location: Diode

The Doppler measurements are also processed on board to obtain real-time orbit data with lower accuracy. The Diode onboard navigator locates the satellite on orbit in real time. This information is essential for providing altimetry data in real time or near-real time.

Ionospheric electron content

By measuring and comparing the path delay of signals transmitted at two separate frequencies, DORIS is able to calculate the electron content in the atmosphere. This information is then used to determine perturbations acting on the altimeter's radar signal. This function complements the dual-frequency altimeter function.

Principle

DORIS orbitography beacons transmit signals at two separate frequencies (2,036.25 MHz and 401.25 MHz) to the satellite. The receiver onboard the satellite analyses the received signal frequencies to calculate its velocity relative to Earth. This velocity is fed into orbit determination models to derive the satellite's position on orbit to within two centimetres on the radial component.

Every 10 seconds the receiver measures the Doppler shift of the signals continuously transmitted from the ground beacons at the two frequencies of 2,036.25 MHz and 401.25 MHz. The onboard ultra-stable oscillator provides the reference for this measurement with a stability of 5x10^-13 over 10 to 100 seconds. Both frequencies are susceptible to group-delay caused by propagation through the ionosphere, but the effects are much greater at the lower VHF frequency (being inversely proportional to the square of the frequency). Thus these measurements can be used to obtain a correction for the higher frequency.

Further information on

- the **DORIS instrument** onboard Envisat (ESA website)
- For further information, see the International DORIS Service (IDS) and DORIS, the space surveyor (Aviso)
4.2.4.1.4. Laser RetroReflector

The LRR is an array of mirrors that provide a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit.

Function

A laser retroreflector is attached to a mount on the nadir panel close to the RA-2 antenna. It has two functions:

- support-to-satellite ranging,
- RA-2 altitude calibration.

The LRR is a passive device which is used as a reflector by ground-based SLR (Satellite Laser Ranging) stations using high-power pulsed lasers. In the case of Envisat, tracking using the LRR is mainly performed by the International Laser Ranging Service (ILRS).

The ILRS provides tracking for the satellite from its global network of laser ranging stations. Laser stations fire short laser bursts at Envisat and time the interval before the pulse is reflected back. These ILRS stations are relatively few, but because their positions are very accurately known, they provide a set of independent reference measurements of Envisat's position, which contribute to the satellite's precise orbit determination.

Principle

The operating principle of the LRR is therefore to measure on the ground the return trip time of laser pulses reflected from an array of corner cubes mounted on the Earth-facing side of the satellite. The corner cubes ensure that the laser beam is reflected back parallel to the incident beam. The detailed design of the cubes includes a compensation for the aberration of the laser beam caused by the satellite's velocity: the satellite moves almost 40 metres between the emission and reception of the laser pulse from the SLR station, and this is compensated for by slight nonparallelism of the reflected beam.

The corner cubes are made of the highest-quality fused silica and work in the visible spectrum. Their performance is optimised at the two wavelengths (694 nm and 532 nm) commonly used in SLR stations. The corner cubes are symmetrically-mounted on a hemispherical surface with one nadir-pointing corner cube in the centre, surrounded by an angled ring of eight corner cubes. This allows laser ranging in the field of view angles of 360° in azimuth and 60° in elevation around the perpendicular to the satellite's Earth-facing panel (positioned on the axis at point -Zs with respect to the satellite's centre of mass).

The design is identical to the very successful reflectors used on ERS-1 and ERS-2.

Further information on the [LRR instrument](https://esa.int) (ESA website)
4.2.4.2. Envisat orbit

Choice of orbit

The selection of a sun-synchronous orbit was of primary importance and has driven the satellite's physical configuration. The total altitude range, within a few tens of kilometres of 800 km, was also critical to the design. Apart from this, there was a certain degree of freedom in the choice of parameters. Many of the choices were examined during the ERS-1 mission preparation and the concept of the multidisciplinary orbit, with a 35-day cycle, evolved. Envisat flies this same high-inclination, sun-synchronous, near-circular orbit with the same ground track.

Orbit maintenance

The orbit maintenance requirements are that the deviation of the actual ground track from the nominal one is kept below 1 km and that the mean local nodal crossing time matches the nominal one to within five minutes. The orbit maintenance strategy aims for minimum disturbance of the payload operation. In-plane manoeuvres are used for altitude adjustment to compensate for the effects of air-drag. This altitude decay affects the ground-track repeatability, mainly in the equatorial regions. The frequency of these manoeuvres is determined by the rate of orbital decay, which in turn is determined by the air density, and this is a function of solar activity. The nominal rate for these in-plane manoeuvres is twice a month. They do not interrupt the operations of most sensors. Out-of-plane corrections are used to rectify the steady drift of inclination mainly caused by solar and lunar gravity perturbations. The solar wind also influences inclination, but its contribution is typically an order of magnitude smaller than the one made by solar and lunar gravity. Inclination drift degrades ground-track maintenance at high latitudes. The drift rate does not depend on air density and corrections are required every few months. As they are out-of-plane they require a 90 degree rotation of the spacecraft, to align the thrusters with the required thrust direction, so these manoeuvres are performed in eclipse to avoid the risk of optical sensors viewing the sun.
Orbit parameters

<table>
<thead>
<tr>
<th>Main characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-major axis</td>
<td>7159.5 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td></td>
</tr>
<tr>
<td>Inclination (sun-synchronous)</td>
<td>98.55°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference altitude (equatorial)</td>
<td>799.8 km</td>
</tr>
<tr>
<td>Nodal period</td>
<td>50 min 25.5 s</td>
</tr>
<tr>
<td>Repeat cycle</td>
<td>35 days</td>
</tr>
<tr>
<td>Number of passes per cycle</td>
<td>1002</td>
</tr>
<tr>
<td>Ground track separation at Equator</td>
<td>80 km</td>
</tr>
<tr>
<td>Acute angle at Equator crossings</td>
<td></td>
</tr>
<tr>
<td>Longitude at Equator of pass 1</td>
<td></td>
</tr>
<tr>
<td>Orbital velocity</td>
<td>7.45 km/s</td>
</tr>
<tr>
<td>Ground scanning velocity</td>
<td></td>
</tr>
</tbody>
</table>

Further information on the [mission's orbit](https://www.esa.int/Envisat) (ESA website)
4.2.4.3. Mission's objectives

The Envisat satellite has an ambitious and innovative payload designed to ensure the continuity of the data measurements from ESA's ERS satellites. Envisat data supports Earth science research and allows monitoring of the evolution of environmental and climate changes. Furthermore, the data will facilitate the development of operational and commercial applications.

Introduction

Global mission objectives

Regional mission objectives

Introduction

The main objective of the Envisat programme is to provide Europe with an enhanced capability for remote sensing observation of Earth from Space, with the aim of furthering the ability of participating states to take part in the studying and monitoring of the Earth and its environment.

Its primary objectives are:

- to provide for continuity of the observations begun with the ERS satellites, including those obtained from radar-based observations;
- to enhance the ERS mission, notably the ocean and ice missions;
- to extend the range of parameters observed to enable us to learn more about the factors determining the environment;
- to make a significant contribution to environmental studies, notably in the area of atmospheric chemistry and ocean studies (including marine biology).

These are coupled with two related, secondary objectives:

- to allow the Earth's resources to be more effectively monitored and managed;
- to improve our understanding of solid Earth processes.

The mission intends to continue and improve upon measurements initiated by ERS-1 and ERS-2, and to take into account the requirements related to the global study and monitoring of the environment.

The mission is an essential element in providing long-term continuous data sets that are crucial for addressing environmental and climatological issues. It will at the same time further promote the gradual transfer of applications of remote sensing data from experimental to pre-operational and operational exploitation.

Envisat, as an undertaking of ESA member states plus Canada, constitutes a major contribution to the effort of Space agencies worldwide to provide the data and information required to further the understanding, modelling, and prediction of environmental and climate changes.

This mission includes both global and regional mission objectives (see below) with the corresponding need to provide data to scientific and applications users (see below) within various time scales.

Global mission objectives

Continuous and coherent global data sets are needed by the scientific and application community in order to understand more about climate processes and to improve climate models.
Some global applications require near-real-time data delivery (within a few hours to one day of acquisition). Specific examples include:

- forecasting the sea state conditions at various scales;
- monitoring sea surface temperature;
- monitoring some atmospheric species (e.g., ozone for warning purposes);
- monitoring some atmospheric variables (e.g., temperature, pressure, water vapour, cloud top height, earth radiation budget, etc.);
- monitoring ocean colour for supporting fisheries and pollution monitoring (complementing the regional missions).

Some of the global objectives require products available in off-line mode (days to weeks of acquisition). Specific examples include quantitative monitoring of:

- radiative processes;
- ocean-atmosphere heat and momentum exchange;
- interaction between the atmosphere and land or ice surfaces;
- composition of the atmosphere and associated chemical processes;
- ocean dynamics and variability;
- ice sheet characteristics and sea ice distribution and dynamics;
- large-scale vegetation processes in correlation with surface energy and water distribution;
- ocean primary productivity;
- natural and man-made pollution over the oceans;
- support for major international programmes (GCOS, IGBP, etc.).

Regional mission objectives

Continuous and coherent regional data sets are needed by the scientific and application user community for a variety of objectives such as:

- sea ice off-shore applications;
- detecting and mapping snow and ice;
- monitoring coastal processes and pollution;
- monitoring ship traffic;
- monitoring agriculture and forests;
- monitoring soil moisture and large-scale vegetation processes;
- geological features and mineral resources;
- applications linked to SAR interferometry (DEM generation, hazard monitoring, etc.);
- hydrological research and applications;
- support for fisheries in coastal waters.

Some of the regional objectives (e.g., sea ice applications, marine pollution, maritime traffic, hazard monitoring, etc.) require near-real-time data products (within a few hours of acquisition) generated according to user requests. Others (e.g., agriculture, soil moisture, etc.) require fast turnaround data services (a few days). The remainder are generally satisfied with off-line (few weeks) data delivery.

Further information on the mission’s objectives (ESA website)
4.2.4.4. Ground segment

The Envisat ground segment provides the means and resources for managing and controlling the mission, receiving and processing the data produced by the instruments, and disseminating and archiving the products generated. Furthermore, it provides a single interface to the users to allow optimum utilisation of the system's resources in line with their needs.

The ground segment can be divided into two major parts:
* the flight operation segment (FOS), which is responsible for command and control of the satellite;
* the payload data segment (PDS), which is responsible for exploiting the instrument data.

The satellite-to-ground communication links rely on various ground stations (Kiruna, Fucino, Svalbard and Villafranca - the latter as TT&C back-up) and the ESA data relay satellite system, Artemis, which provides direct communication between Envisat and the ground even when the satellite is out of sight of the ground stations. This will enable the use of high-rate sensors whose data cannot be stored on board, optimally managed tape dumps, and enhanced visibility for command and control. Additional national and ESA ground stations will be involved.

Payload Data Segment (PDS)

Role of the PDS
Architectural elements
PDS product distribution
Processing and archiving centres (PAC)
Processor algorithms

The PDS comprises all the ground segment elements related to payload data acquisition, processing and archiving. It also includes the user interface facilities which offer Envisat services to the user community.

For more detailed information see the PDS Detailed Description.

Role of the PDS

The PDS provides all services related to the exploitation of data produced by the instruments carried on the Envisat satellite:

- all payload data acquisition for the global mission;
- all regional data acquisition performed by ESA stations;
- processing and delivery of ESA near-real-time products;
- archiving, processing and delivery of ESA offline products with the support of processing and archiving centres (PACs);
- interfaces with national and foreign stations acquiring regional data;
- interfaces with the user community from order handling to product delivery.

Architectural elements
Overview of the PDS architectural elements

The PDS comprises:

ESA provided centres and stations:
- the payload data control centre (PDCC) at Esrin;
- the payload data handling station (PDHS) at Esrin and Kiruna;
- the payload data acquisition station (PDAS) at Fucino;
- the low-rate reference archive centre (LRAC) at Kiruna.

Centres and stations procured nationally:
- the processing and archiving centre (PAC’s) located at ESA member states;
- the national stations providing ESA services (NSES) and located in programme participating states.

The PDS also interfaces with national and foreign stations duly authorised to receive Envisat regional data.

All PDS centres and stations is coordinated by the payload data control centre (PDCC) which is in charge of instrument and ground segment planning and of the overall PDS monitoring and control. The PDCC interfaces with the flight operation control centre (FOCC) for all mission planning activities.

PDS product distribution

Two categories of product distribution services are provided by the PDS:

Near real time services
- typically three hours from acquisition for data used in forecasting or tactical operations (global and regional products produced and distributed systematically);
- typically one to three days from acquisition for applications requiring high-resolution images (agriculture, forestry, soil moisture, etc.) with production and delivery to users on request.
Off-line service

Continuity of services from near real time to off-line:

- delivery a few days to weeks from data acquisition;
- product commonalities (same format, same processing algorithms whenever possible);
- off-line products benefit from a posteriori knowledge of calibration, auxiliary data, and precise orbit.

Processing and archiving centres (PAC)

The processing and archiving centres, located in ESA member states, archive and process off-line high rate data and generate off-line geophysical products for the regional high-rate and full-resolution instruments and for the global low-rate instruments. Altimetry processing and archiving centre is located at F-PAC.

Further information on Envisat ground segment (ESA website)
4.3. Future altimetry missions

Thanks chiefly to Topex/Poseidon, satellite altimetry has proven a valuable source of data for a broad range of applications. Looking beyond the missions in operational service today, future satellites will need to provide better spatial and temporal coverage so that we can study in particular mesoscale variations and other phenomena more closely.

Missions to be launched before 2010

- **Jason-2** (2008)
- **Cryosat** (2009)
- **(Altika)** (2009)

Missions to be launched after 2010

Several options are being considered for 2010 and beyond: either missions with swath instruments, or a constellation of at least three satellites. The currently foreseen missions (still in discussion) are:

- **NPOESS**
- **Sentinel 3**

For the medium term, consideration is now being given to altimetry missions capable of ‘scanning’ the ocean surface to acquire data at scales of a few tens of kilometres, passing over the same spots every few days. Other projects on the drawing board are based on constellations of dedicated, low-cost microsatellites. Altimeter-interferometers are under study, possibly with SAR capabilities. An Envisat follow-on is also under study. Looking further into the future, the goal will be to monitor relatively rapid ocean variations with a period of less than 10 days at scales below 100 kilometres.

Beyond 2010, 'conventional' operational missions are still envisaged. NOAA and the US Department of Defense are planning an altimeter mission in the framework of the future NPOESS oceanographic and meteorological programme.
4.3.1. The Jason-2 mission

Jason-2 is scheduled to take over and continue the missions of Topex/Poseidon and Jason-1 in 2008, in the framework of a cooperation between CNES, NASA, Eumetsat and NOAA. It will carry the same kind of payload as its two predecessors for a high-precision altimetry mission: a Poseidon-class altimeter, a radiometer and three location systems. The orbit will also be identical.

The Jason-2 payload will include the next generation of Poseidon altimeter (Poseidon-3, with the same general characteristics as Poseidon-2, but with a lower instrument noise and an algorithm enabling better tracking over land and ice), and the DORIS location system. The accuracy should be about 1 cm for the altimeter as well as the orbit measurements.

Further information on:

- Onboard instruments
- Orbit

- **Jason-1** (Aviso)
- **Ocean surface topography from space** (NASA/JPL)
- **Jason-1 and 2, the ocean observatory** (CNES)
4.3.1.1. Instruments

Jason-2 will be carrying a payload of five instruments: the Poseidon-3 altimeter, the mission’s main instrument, which will measure range; the AMR radiometer, which will measure perturbations due to atmospheric water vapour; and three location systems: DORIS, LRA and GPSP. These instruments will provide full redundancy and measurements for at least three years.

Poseidon-3 altimeter

Poseidon-3 will be the mission's main instrument, derived from the Poseidon-2 altimeter on Jason-1. It is a compact, low-power, low-mass instrument offering a high degree of reliability. Poseidon-3 is a radar altimeter that emits pulses at two frequencies (13.6 and 5.3 GHz, the second frequency is used to determine the electron content in the atmosphere) and analyses the return signal reflected by the surface. The signal round-trip time is estimated very precisely to calculate the range, after applying the necessary corrections (Instrument supplied by CNES).

Further information

Advanced Microwave Radiometer (AMR)

This instrument measures radiation from the Earth's surface at three frequencies (18, 21 and 37 GHz). Measurements acquired at each frequency are combined to determine atmospheric water vapour and liquid water content. Once the water content is known, we can determine the correction to be applied for radar signal path delays (Instrument supplied by NASA).

Further information

Location systems

The location systems onboard Jason-2 will complement each other to measure the satellite's position on orbit to within two centimetres on the radial component. The LRA is highly accurate but it requires ground stations
that are complex to operate, and its use can be restricted by adverse weather conditions. It is used to calibrate the other two location systems so that the satellite’s orbit can be determined as accurately as possible. The GPSP (a GPS receiver) acquires data that complement DORIS measurements in order to determine the orbit in real time and to support precise orbit determination.

DORIS (Doppler location)

The DORIS system uses a ground network of orbitography beacons spread around the globe, which send signals at two frequencies to a receiver on the satellite. The relative motion of the satellite generates a shift in the signal's frequency (called the Doppler shift) that is measured to derive the satellite’s velocity. These data are then assimilated in orbit determination models to keep permanent track of the satellite’s precise position (to within three centimetres) on its orbit (Instrument supplied by CNES).

Further information

GPSP (GPS location)

The GPSP uses the Global Positioning System (GPS) to determine the satellite's position by triangulation, in the same way that GPS fixes are obtained on Earth. At least three GPS satellites determine the a mobile object's (in this case the satellite's) exact position at a given instant. Positional data are then integrated into an orbit determination model to track the satellite's trajectory continuously (Instrument supplied by NASA).

Further information

LRA (laser tracking)

The LRA (Laser Retroreflector Array) is an array of mirrors that provide a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit (Instrument supplied by NASA).

Further information

Further information on Jason-2 (Aviso website)
4.3.1.1.1. Poseidon-3

The Poseidon-3 altimeter will be the main instrument on the Jason-2 mission. Derived from the Poseidon-1 altimeter on Topex/Poseidon and Poseidon-2 on Jason-1, it measures sea level, wave heights and wind speed. It operates at two frequencies and is also able to estimate atmospheric electron content.

Poseidon-2 being integrated on Jason-1. Poseidon-3 on Jason-2 will be similar (Credits CNES/Alcatel)

Function

Poseidon-3 measures range (the distance from the satellite to the Earth's surface), wave height and wind speed.

Principle

The altimeter emits a radar beam that is reflected back to the antenna from the Earth's surface (see how altimetry works for details). Poseidon-3 operates at two frequencies (13.6 GHz in the Ku band and 5.3 GHz in the C band) to determine atmospheric electron content, which affects the radar signal path delay. These two frequencies also serve to measure the amount of rain in the atmosphere.

Technical data

Poseidon-3, or SSALT (for Solid State ALTimeter), uses solid-state amplification techniques.

<table>
<thead>
<tr>
<th>Emitted Frequency (GHz)</th>
<th>Dual-frequency (Ku, C) - 13.575 and 5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Repetition Frequency (Hz)</td>
<td>2060 interlaced (3Ku-1C-3Ku)</td>
</tr>
<tr>
<td>Pulse duration (microseconds)</td>
<td>105</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>320 (Ku and C)</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>1.2</td>
</tr>
<tr>
<td>Antenna beamwidth (degrees)</td>
<td>1.28 (Ku), 3.4 (C)</td>
</tr>
<tr>
<td>Power (W)</td>
<td>7</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Yes</td>
</tr>
<tr>
<td>Specific features</td>
<td>Solid-State Power Amplifier. Dual-frequency for ionospheric correction, High resolution in C band (320 MHz)</td>
</tr>
</tbody>
</table>

Further information on [Jason-2](http://www.aviso.oceanobs.com) (Aviso website)
4.3.1.1.2. AMR : Advanced Microwave Radiometer

The AMR acquires measurements via three separate frequency channels to determine the path delay of the altimeter's radar signal due to atmospheric water vapour.

Function

The AMR measures water vapour content in the atmosphere so that we can determine how it impacts radar signal propagation. Its measurements can also be used directly for studying other atmospheric phenomena, particularly rain.

Principle

The AMR is a passive receiver that collects radiation reflected by the oceans at frequencies of 18.7, 23.8, and 34 GHz. Radiation measured by the radiometer depends on surface winds, ocean temperature, salinity, foam, absorption by water vapour and clouds, and various other factors. To determine atmospheric water vapour content accurately, we need to eliminate sea surface and cloud contributions from the signal received by the radiometer. This is why the AMR uses different frequencies, each of which is more sensitive than the others to one of these contributions. The main 23.8 GHz frequency is used to measure water vapour, the 34 GHz channel provides the correction for non-rainbearing clouds, and the 18.7-GHz channel is highly sensitive to wind-driven variations in the sea surface. By combining measurements acquired at each of these frequencies, we can extract the water vapour signal.

Further information on JPL's AMR Instrument on OSTM/Jason-2 (NASA/JPL website)
4.3.1.1.3. DORIS

The DORIS instrument onboard Jason-2 will provide real-time location and precise orbit determination. DORIS measurements are also used for geophysical studies, in particular through the International DORIS Service (IDS). DORIS is a dual-frequency instrument able to determine atmospheric electron content.

The main changes from the previous DORIS instruments are:
- the instrument will benefit from full redundancy;
- it will be possible to fully reload software without any mission interruption;
- platform attitude will be provided in real time to DORIS and used by Diode (the onboard DORIS navigator); and will also be downloaded by DORIS with the science telemetry dataflow;
- a dosimeter will be included in the electronics unit, to measure the total radiation dose received by DORIS;
- the onboard altimeter will receive information from DORIS for real-time tracking.

Function

Real-time location: Diode

The Diode onboard navigator locates the satellite on orbit in real time. This information is essential for providing altimetry data in real time or near-real time.

Precise orbit determination

DORIS measurements are used for precise orbit determination (POD).

Ionospheric electron content

By measuring and comparing the path delay of signals transmitted at two separate frequencies, DORIS is able to calculate the electron content in the atmosphere. This information is then used to determine perturbations on the altimeter's radar signal. This function complements the dual-frequency altimeter function.
Principle

DORIS orbitography beacons transmit signals at two separate frequencies (2,036.25 MHz and 401.25 MHz) to the satellite. The receiver onboard the satellite analyses the received signal frequencies to calculate its velocity relative to Earth. This velocity is fed into orbit determination models to derive the satellite's position on orbit to within two centimetres on the radial component.

For Further information, see the [International DORIS Service (IDS)](https://www.ids-aviso.org) and [DORIS, the space surveyor](https://www.aviso.altimetry.fr) (Aviso)
4.3.1.1.4. GPSP tracking receiver

The GPSP is a tracking system that uses the GPS constellation of satellites to determine the exact position of a transmitter.

Function

The GPSP supports precise orbit determination by the DORIS system. It also helps to improve gravity field models and provides data for satellite positioning accurate to about 50 metres and 50 nanoseconds.

Principle

The GPSP receives dual-frequency navigation signals continuously and simultaneously from 16 GPS satellites. It uses these signals to acquire phase measurements accurate to about one millimetre and pseudo-range measurements accurate to about 10 centimetres.

Technical data

The onboard system consists of two independent receivers operating in cold redundancy, each with an omnidirectional antenna, low-noise amplifier, quartz oscillator, sampling converter and a baseband digital processor communicating via the bus interface.

For Further information see [International GPS Services](http://internationalgpsservices.com).
4.3.1.1.5. LRA: Laser Retroreflector Array

The LRA is a totally passive reflector designed to reflect laser pulses back to their point of origin on Earth. It is used for calibrating the satellite's Precise Orbit Determination system.

Function

The LRA is an array of mirrors that provides a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate very precisely where the satellite is on its orbit. The LRA is used to calibrate the other location systems on the satellite (DORIS, GPSP) with a very high degree of precision.

Principle

The LRA is a passive instrument that acts as a reference target for laser tracking measurements performed by ground stations. Laser tracking data are analysed to calculate the satellite's altitude to within a few millimetres. However, the small number of ground stations and the sensitivity of laser beams to weather conditions makes it impossible to track the satellite continuously. This is why other onboard location systems are needed.

Technical data
The retroreflectors are placed on the nadir side of the satellite. The totally passive unit consists of nine quartz corner cubes arrayed as a truncated cone, with one cube in the centre and the others arranged azimuthally around the cone. This arrangement will allow laser ranging at field-of-view angles of 360 degrees in azimuth and 60 degrees in elevation around the perpendicular. The retroreflectors are optimised for a wavelength of 532 nanometres (green), offering a field of view of about 100 degrees.
4.3.1.2. Jason-2 orbit

Jason-2’s orbit will be identical to that of Jason-1 (and that of Topex/Poseidon previously). It is optimised to study large-scale ocean variability and to provide coverage of 90% of the world’s oceans over a ten-day cycle.

Choice of orbit

Jason-2’s high altitude (1,336 kilometres) reduces interactions with the Earth’s atmosphere and gravity field to a minimum, thus making orbit determination easier and more precise. The orbit inclination of 66 degrees North and South enables the satellite to cover most of the globe’s unfrozen oceans. The orbit’s repeat cycle is just under 10 days (9.9156 days to be precise, i.e., 10 days minus two hours) - in other words, the satellite passes over the same point on the Earth’s surface (to within one kilometre) every ten days. This cycle is a trade-off between spatial and temporal resolution designed for the study of large-scale ocean variability. The fact that the orbit is prograde and not sun-synchronous also avoids aliasing of different tidal components at the same frequency.

Furthermore, using the same orbit as Topex/Poseidon will ensure better intercalibration and data continuity. The orbit is also designed to pass over two dedicated ground calibration sites: Cap Senetosa in Corsica and the Harvest oil rig platform in California, USA.

Manoeuvres

A satellite’s orbit parameters tend to change over time as a result of atmospheric drag. In the long term, more or less periodic variations also occur due to instabilities in the Earth's gravity field, solar radiation pressure and other forces of smaller magnitude.

Orbit manoeuvres are performed every 40 to 200 days. Intervals between manoeuvres depend chiefly on solar flux and each manoeuvre lasts from 20 to 60 minutes. Wherever possible, they are performed at the end of the orbit cycle, and above solid earth, so that lost data acquisition time is reduced to a minimum.

Orbit parameters

<table>
<thead>
<tr>
<th>Main characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-major axis</td>
<td>7,714.4278 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>0.000095</td>
</tr>
<tr>
<td>Inclination (non-sun-synchronous)</td>
<td>66.039°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference altitude (equatorial)</td>
<td>1,336 km</td>
</tr>
<tr>
<td>Nodal period</td>
<td>6,745.72 seconds (112'42" or 1h52’)</td>
</tr>
<tr>
<td>Repeat cycle</td>
<td>9.9156 days</td>
</tr>
<tr>
<td>Number of passes per cycle</td>
<td>254</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Ground track separation at Equator</td>
<td>315 km</td>
</tr>
<tr>
<td>Acute angle at Equator crossings</td>
<td>39.5°</td>
</tr>
<tr>
<td>Longitude at Equator of pass 1</td>
<td>99.9242°</td>
</tr>
<tr>
<td>Orbital velocity</td>
<td>7.2 km/s</td>
</tr>
<tr>
<td>Ground scanning velocity</td>
<td>5.8 km/s</td>
</tr>
</tbody>
</table>

Further information on [Jason-2](https://www.aviso.altimetry.fr/en/) (Aviso website)
Cryosat-2 is an altimetry satellite built by the European Space Agency and dedicated to polar observation. It will embark on a three-and-a-half-year mission to determine variations in the thickness of the Earth’s continental ice sheets and marine ice cover, and to test the prediction of thinning Arctic ice due to global warming.

The Cryosat orbit, at an inclination of about 92 degrees and an altitude of 717 kilometres, will cover almost all the polar regions. Cryosat will carry an altimeter/interferometer called SIRAL and a DORIS instrument, but no radiometer. SIRAL is a Ku-band instrument (13.575 GHz) operating in three modes:
- Low-resolution, nadir-pointing altimeter mode
- SAR mode
- SAR interferometer mode

Current plans are for Cryosat to operate over the oceans for validation purposes in low-resolution mode. This means that the ground segments will be able to process ocean altimetry measurements acquired by SIRAL. Direct radiometric corrections, however, will not be possible. Dynamic topography data of medium quality, but from a new orbit, may therefore be available. These data could be combined with measurements from other dedicated altimetry missions.

The first Cryosat satellite was lost on launch, on 8 October 2005, due to an anomaly in the launch sequence. Its replacement, Cryosat-2, will be launched in March 2009.

Further information on:
- Onboard instruments
- Orbit
- Mission's objectives
- Ground segment

Further information: [ESA's ice mission Cryosat](https://www.esa.int/esaSOA/ESA%27s_ice_mission_Cryosat) (ESA website)
4.3.2.1. Instruments

Cryosat-2's primary payload will be the SAR/Interferometric Radar Altimeter (SIRAL), which has extended capabilities to meet the measurement requirements for ice-sheet elevation and sea-ice freeboard. Cryosat-2 will also carry three star trackers for measuring the orientation of the baseline. In addition, a radio receiver called Doppler Orbit and Radio Positioning Integration by Satellite (DORIS) and a small laser retroreflector will ensure that Cryosat-2's position is accurately tracked.

SIRAL altimeter

SIRAL is an altimeter/interferometer operating in Ku-band (13.575 GHz) in three modes:
- Low-resolution, nadir-pointing altimeter mode
The altimeter will measure the distance between the satellite and the surface of the Earth.
- SAR mode
Unlike conventional radar altimeters, where the interval between pulses is about 500 microseconds, the Cryosat altimeter will send a burst of pulses with an interval of only 50 microseconds between them. The returning echoes will thus be correlated, and by treating the whole burst of pulses in one operation, the data processor can separate the echo into strips arranged across the track by exploiting the slight frequency shifts (caused by the Doppler effect) in the forward- and aft-looking parts of the beam.
- SAR interferometer (SarIn) mode
In order to measure the arrival angle, a second receive antenna will be activated so that the radar echo is received by two antennas simultaneously. When the echo comes from a point not directly beneath the satellite there will be a difference in the path-length of the radar wave, which will be measured. Simple geometry will provide the angle between the baseline joining the antennas and the echo direction.

Further information

Location systems

The location systems onboard Cryosat-2 will complement each other to measure the satellite's position on orbit to within two centimetres on the radial component. The LRR is highly accurate but it requires ground stations that are complex to operate, and its use can be restricted by adverse weather conditions. It is used to
calibrate DORIS measurements in order to determine the orbit in real time and to support precise orbit determination.

DORIS (Doppler location)

The DORIS system uses a ground network of orbitography beacons spread around the globe, which send signals at two frequencies to a receiver on the satellite. The relative motion of the satellite generates a shift in the signal's frequency (called the Doppler shift) that is measured to derive the satellite's velocity. These data are then assimilated in orbit determination models to keep permanent track of the satellite's precise position (to within three centimetres) on its orbit.

[Further information](#)

LRR (laser tracking)

The LRR is an array of mirrors that provide a target for laser tracking measurements from the ground. By analysing the round-trip time of the laser beam, we can locate where the satellite is on its orbit.

[Further information](#)

Further information: Cryosat-2 satellite (ESA website)
4.3.2.1.1. SIRAL

Cryosat-2’s primary payload will be the SAR/Interferometric Radar Altimeter (SIRAL), which has extended capabilities to meet the measurement requirements for ice-sheet elevation and sea-ice freeboard. Unlike conventional radar altimeters, where the interval between pulses is about 500 microseconds, the Cryosat altimeter sends a burst of pulses with an interval of only 50 microseconds between them. The returning echoes are thus correlated, and by treating the whole burst of pulses in one operation, the data processor can separate the echo into strips arranged across the track by exploiting the slight frequency shifts (caused by the Doppler effect) in the forward- and aft-looking parts of the beam. Each strip is about 250 m wide and the interval between bursts is arranged so that the satellite moves forward by 250 m each time. The strips laid down by successive bursts can therefore be superimposed on each other and averaged to reduce noise. This mode of operation is called Synthetic Aperture Radar, or SAR mode.

Phase difference between returning radar waves: in order to measure the arrival angle, a second receive antenna is activated so that the radar echo is received by two antennas simultaneously. When the echo comes from a point not directly beneath the satellite there is a difference in the path length of the radar wave, which is measured. Simple geometry provides the angle between the baseline joining the antennas and the echo direction.

Knowledge of the precise orientation of the baseline and the two receiving antennas will be essential for the success of the mission. Cryosat is to measure this baseline orientation using the oldest and most accurate of references - the position of the stars in the sky. Three star trackers will be mounted on the support structure for the antennas. Each will contain a camera, which will take up to five pictures per second. The images will be analysed by a built-in computer and compared to a catalogue of star positions.

The altimeter will measure the distance between the satellite and the surface of the Earth. This measurement cannot be converted into the more useful measurement of surface height until the position of the satellite is accurately known.

Function

SIRAL measures range (the distance from the satellite to the Earth’s surface).

Further information: Cryosat mission overview (ESA website)
4.3.2.1.2. DORIS

A radio receiver called DORIS (Doppler Orbit and Radio positioning Integration by Satellite) detects and measures the Doppler shift on signals broadcast from a network of radio beacons spread around the world. Although the full accuracy of this system is only obtained after ground processing, DORIS is able to provide a real-time estimate onboard, good to about half a metre.

The DORIS instrument onboard Cryosat-2 will provide real-time location and **precise orbit determination**.

Function

Real-time location: Diode

The Diode onboard navigator locates the satellite on orbit in real time. This information is essential for providing altimetry data in real time or near-real time.

Precise orbit determination

DORIS measurements are used for **precise orbit determination** (POD).

Ionospheric electron content

By measuring and comparing the path delay of signals transmitted at two separate frequencies, DORIS is able to calculate the electron content in the atmosphere.

Principle

DORIS orbitography beacons transmit signals at two separate frequencies (2,036.25 MHz and 401.25 MHz) to the satellite. The receiver onboard the satellite analyses the received signal frequencies to calculate its velocity relative to Earth. This velocity is fed into orbit determination models to derive the satellite’s position on orbit to within two centimetres on the radial component.

For Further information, see the [International DORIS Service (IDS)](https://www.ids-aviso.org) and [DORIS, the space surveyor](https://www.aviso.altimetry.fr) (Aviso/CNES)
4.3.2.1.3. LRR: Laser RetroReflector

A small laser retroreflector will be attached to the underside of Cryosat-2. This compact device has seven optical corner cubes, which reflect light back in exactly the direction it comes from. A global network of laser tracking stations will fire short laser pulses at Cryosat-2 and time the interval before the pulse is reflected back. These stations are relatively few, but because their position is very accurately known from their routine work of tracking geodetic satellites, they will provide a set of independent reference measurements of Cryosat-2's position.

Function

The LRR is used to calibrate the other location system on the satellite (DORIS) with a very high degree of precision.

Principle

The LRR is a passive instrument that acts as a reference target for laser tracking measurements performed by ground stations. Laser tracking data are analysed to calculate the satellite's altitude to within a few millimetres. However, the small number of ground stations and the sensitivity of laser beams to weather conditions make it impossible to track the satellite continuously. This is why other onboard location systems are needed.

Technical data

The retroreflectors will be placed on the nadir side of the satellite. The totally passive unit consists of nine quartz corner cubes arrayed as a truncated cone, with one cube in the centre and the others arranged azimuthally around the cone. This arrangement will allow laser ranging at field-of-view angles of 360 degrees in azimuth and 60 degrees in elevation around the perpendicular. The retroreflectors are optimised for a wavelength of 532 nanometres (green), offering a field of view of about 100 degrees.
4.3.2.2. Cryosat orbit

Cryosat is a satellite with a single mission objective - the selection of its orbit and basic characteristics have therefore been entirely driven by the scientific requirements. Consequently, the orbit will have a high inclination of 92°, taking it just 2° short of the poles. This orbit will be non-sun-synchronous (commonly used for remote-sensing satellites) and will drift through all angles to the Sun in eight months. This has presented some challenges in the satellite design; all parts will at some time be exposed to the full heating power of the Sun, while at other times half the satellite will be in permanent shadow for weeks on end.

The science requirements for sea ice demand spatial sampling at 105 km² (~300 km by 300 km). The effect of snowfall variability requires that the measurements of sea ice for the primary mission goal fall within one month in any one year. This places an upper limit on the temporal sampling. This sampling is also suitable for the secondary sea ice objectives. For land ice, the requirements dictate spatial sampling at 104 km² (~100 km by 100 km). There is no specific temporal sampling requirement, although the accuracy of the trend estimate will depend on the number of temporal samples. To maximise coverage over ice caps and glaciers, dense spatial sampling consistent with the temporal sampling for the primary mission goal should be achieved.

The spatial pattern of samples need not repeat, provided it retains a constant temporal and spatial sampling density. Sea ice is a moving mass field. Were the sample pattern to repeat itself, measurements would still observe different ice. The land ice measurement uses crossovers of the orbit, and in doing so removes the effect of the topography.

Why doesn't won't Cryosat fly in a 90° inclination orbit, which would take it directly over the poles to observe all of the polar regions? The choice of orbit is a compromise, as a 90° orbit would be beneficial for the survey of surveying Arctic sea-ice, but would seriously degrade the monitoring of the Greenland and Antarctic ice masses. Such measurements are made at orbit crossovers, where the north-going satellite track crosses over an earlier (or later!) south-going track. With a 90° inclination orbit, crossovers would be few, only occurring due to the Earth's rotation, since the orbit tracks are otherwise directly along the lines of longitude and do not cross. The 2° offset from a true polar orbit is enough to ensure an adequate density of crossovers over the ice sheets.

Further information: Cryosat mission overview (ESA website)
4.3.2.3. Mission's objectives

Cryosat's mission is dedicated to monitoring very precise changes in the elevation and thickness of polar ice sheets and floating sea ice over a three-year period. The observations made by Cryosat will determine whether or not our ice masses are thinning due to global warming.

The question of whether global climate change is causing the polar ice caps to shrink is one of the most hotly-debated environmental issues we currently face. By monitoring precise changes in the thickness of the polar ice sheets and floating sea ice, the Cryosat mission aims to answer this question.

Cryosphere's role

Almost 80% of the Earth's fresh water is locked up in the cryosphere, i.e. in snow, ice and permafrost. The cryosphere plays an important role in moderating the global climate, and as such, the consequences of receding ice cover due to global warming are far-reaching and complex. Due to their high albedo, ice masses directly affect the global energy budget by reflecting about 80% of incident sunlight back out to Space. Thus, once formed, ice tends to be maintained. However, if ice cover were to decrease, less solar radiation would be reflected away from the surface of the Earth - causing the ice to absorb more heat and consequently melt faster still. Around the North Pole, an area of sea ice the size of Europe melts away every summer and then freezes again over the winter. The thickness of Arctic sea ice plays a central role in the polar climate as it moderates heat exchange by insulating the ocean from the cold polar atmosphere.

The cryosphere has a central role in the Earth's radiation budget. Loss of sea ice is predicted to cause greater greenhouse-gas warming in the Arctic than the rest of the Earth. Ice sheets and glaciers are a control on sea level. They are the largest uncertainty factor in determining the source of the present rise in sea level. The central questions concerned with the cryosphere are: How is deepwater formation and polar and subpolar ocean exchange affected by sea ice? What are the imbalances in the Antarctic and Greenland ice sheets? Ocean-atmosphere-ice models and ocean-ice-solid Earth models demand spatially- and temporally-continuous estimates of ice mass fluxes on regional and global scales. Current observations are deficient and only satellites can eliminate this deficiency. The Cryosat mission and various international programmes will be undertaking a decade of focused study on the roles of the cryosphere.

To meet the challenges of measuring ice, Cryosat will reach latitudes of 88° and will carry a sophisticated radar altimeter called SIRAL (Synthetic Aperture Radar Interferometric Radar Altimeter). It is based on the heritage of existing instruments, but incorporates several major enhancements designed to overcome the difficulties intrinsic to the precise measurement of ice surfaces.

Cryosat measurements

Fundamentally, there are two types of polar ice: the ice that floats in the oceans and the ice that lies on land. Not only do these two forms of ice have different consequences for our planet and its climate, they also pose different challenges when trying to measure them from Space.

Floating sea ice

Sea ice is relatively thin - up to a few metres thick, but it influences regional temperature and the circulation of ocean currents, and consequently the Earth's climate. Cryosat will acquire precise measurements of the thickness of floating sea ice so that annual variations can be detected.

Cryosat will determine the thickness of floating sea ice by measuring the freeboard of ice floes; that is the height by which the ice extends above the water's surface. This technique was demonstrated with the ERS-1 radar altimeter, but that instrument, as with all conventional radar altimeters, was hampered by its relatively
low spatial resolution of about 5 km. Cryosat will achieve improved spatial resolution of 250 m in the along-track direction using the Synthetic Aperture technique.

Ice-shelf break up

In contrast, the ice sheets that blanket Antarctica and Greenland are several kilometres thick. The growth and shrinkage of these ice masses have a direct influence on sea level. The approach used for measuring these vast thicknesses is to determine the height of the surface accurately enough to detect small changes.

The improved resolution of Cryosat's radar compared with that of its pulse-limited predecessors, coupled with its interferometric capability, will allow for the first time spatially- and temporally-continuous measurements of the ice-sheet margins and smaller ice masses.

Further information: [Cryosat science overview](https://www.esa.int/Web/gateway/News_and_media/Announcements/Cryosat_science_overview) (ESA website)
4.3.2.4. Ground segment

The Cryosat Ground Segment will be organised around a single ESA ground station, located in Kiruna-Salmijarvi, in Northern Sweden. This is where contact will be established with the satellite, for about 10 minutes at a time, 11 times a day, during which commands will be sent to the satellite and data downloaded.

Mission planning, however, will be performed in ESA-ESRIN for all matters relating to the payload (mainly instrument activity planning) and in ESA-ESOC for everything concerning the platform (mainly orbit maintenance through manoeuvres). The detailed plan will be uploaded weekly to the satellite from Kiruna-Salmijarvi.

It is worth noting that the activity of the Cryosat instruments will be very repetitive, and will be based on ground topology (ice boundaries evolving through the year) and a few specific user demands, recorded before launch. These will not be subject to regular changes after launch.

The large amount of data received from the payload, and in particular from the altimeter, will be processed at Kiruna-Salmijarvi. Data products at Level-1b (radar echoes geolocated and corrected for instrument features) and Level-2 (ground elevation and ice freeboard, corrected for atmospheric and geophysical effects) will be systematically produced by ESA, based on the repetitive data acquisition activity planned above. There will be no 'on-demand' data processing in the routine data production; however, provision has been made for troubleshooting needs.

All external auxiliary data needed for data processing, in particular the Precise Orbit data, will be received from the SSALTO centre operated by CNES in Toulouse, with one exception - dynamic sea ice concentration will be received from UCL in London.

Data will be routinely distributed to users using physical media (CDs, DVDs). Use of high-speed networks will also be used as far as possible, subject to network performance.

An important aspect of the Cryosat Ground Segment is that it has been designed for low manpower operations. Furthermore, operations and troubleshooting will be performed remotely for all systems located in Kiruna-Salmijarvi.

Further information: Cryosat ground segment (ESA website)
4.3.3. (AltiKa)

The CNES-built AltiKa altimeter (working in Ka-band, 35 GHz), as well as a DORIS instrument, is scheduled to be carried on board an ISRO (Indian Space Research Organisation) satellite. Signal frequencies in the Ka-band will enable better observation of ice, rain, coastal zones, land masses (forests, etc.) and wave heights.

This will be an oceanography mission, complementary to Jason-2. Its objectives are:

- to carry out precise, repetitive global measurements of sea surface height, significant wave heights and wind speed, for:
 - developing operational oceanography;
 - improving understanding of the climate and developing forecasting capabilities;
 - operational meteorology.
- to ensure, from 2009, in association with Jason-2, the continuity of the service currently provided by the altimeters onboard Envisat and Jason-1,
- to meet the requirements expressed by various international ocean and climate study programmes, and contribute to building a global ocean observing system.

The proposed payload will integrate:

- a high-resolution AltiKa altimeter that incorporates a dual-frequency radiometric function,
- the DORIS precise orbitography system, in association with a laser retroreflector (LRA).

This payload will be carried onboard an Indian satellite which has yet to be defined. Besides this payload it will also carry an Argos instrument. The mission, which is a cooperation between CNES and ISRO, is planned to be launched at the end of 2009, with a life of three years (two years for the nominal phase and one year for the extended phase).

Further information on the AltiKa instrument
4.3.3.1.1. AltiKa

AltiKa is a K_a-band altimeter (35 GHz) developed by CNES that can be flown on a microsatellite or as an auxiliary passenger on other missions. Signal frequencies in the K_a-band will enable better observation of ice, rain, coastal zones, land masses (forests, etc.) and wave heights.

AltiKa is aiming to observe the ocean in as much detail and as accurately as current missions, only at lower cost, by flying the altimeter on a microsatellite that is cheaper to design, build and launch. Experience has shown that an altimetry platform must comprise an altimeter, radiometer and precise orbit determination system, with sufficient redundancy, as well as enough fuel to keep the satellite orbiting on a repeating ground track - at least with a 'conventional' altimetry mission.

The AltiKa altimeter will be a single-frequency Ka-band altimeter (operating at 35.75 GHz, weighing less than 20 kg and consuming less than 50 Watts). Alcatel Space developed a Ka-band altimeter between 1998 and 2000 which was based on the same technologies as those used for the Poseidon-1 and Poseidon-2 altimeters.
NPOESS (National Polar-orbiting Operational Environmental Satellite System) is a constellation of satellites decided upon by several US government agencies in partnership with Eumetsat, to observe the atmosphere, oceans, landmasses and the Space environment. NPOESS will comprise three polar-orbiting satellites carrying 10 to 12 sensors, including an altimeter. These sensors will be a rich source of data for global monitoring, weather forecasting and long-term climate prediction. The first satellite is scheduled for launch in 2008; the first one carrying an altimeter is planned for 2012.

Further information on:

- NPOESS - National Polar-orbiting Operational Environmental Satellite System (NOAA)
- National Polar-orbiting Operational Environmental Satellite System (NPOESS) (Ball Aerospace)
- NPP (NPOESS Preparatory Project) (NASA/GSFC)
4.3.5. Sentinel 3 - Ocean

ESA is presently conducting a suite of activities to define the Space component of GMES more precisely. These Preparatory Activities are supporting the drafting of a formal programme proposal for the implementation of the GMES Space Component, which will be presented to the ESA Ministerial Council meeting at the end of 2005. Studies of the Sentinel 1, 2 and 3 families are aiming to provide the detailed definition of the satellite, its requirements for the ground segment and the operations concept (based on the requirements for an operational GMES system which have been defined in cooperation with users and other GMES stakeholders).

This mission, dedicated to provision of operational oceanographic services, has been baselined as a baseline within GMES. It shall provide data, on an operational basis, data in support of services that have been developed with ERS and Envisat since 1991. The altimeter part component of the mission will further complement that of Jason and others to contribute to a worldwide operational oceanographic service. Taking into account the global context and in particular European needs, capabilities and plans, the Sentinel 3 mission should begin by including first those components which (being well-defined and already exploited on a near-operational basis) have no guaranteed operational continuity beyond Envisat. These elements are the high-inclination altimeter and the visible-infrared component for products based on ocean colour and sea-surface temperature based products. In addition, activities related to the accommodation of the IR sensor on Sentinel 3 will be added during the second part of the definition study.

Further information on: GMES Preparatory Activities (GPA) - Sentinel Family Definition Studies

Source ESA
5. Altimetry products

Data

Easy-to-use

- Delayed Time Maps of Sea Level Anomalies Upd and geostrophic velocity anomalies AVISO
- Delayed Time Maps of Absolute Dynamic Topography Upd and absolute geostrophic velocities AVISO
- Near-Real Time Merged Maps of Absolute Dynamic Topography and absolute geostrophic velocities AVISO
- Near-Real Time Merged Maps of Sea Level Anomalies and geostrophic velocity anomalies AVISO
- Sea surface temperature and height, global 0.5 and 1.0 deg grids (JPL, WOCE v3) PO.DAAC
- Near-real time merged maps of Wind speed modulus and maps of Significant Wave Heights AVISO
- Near Real-Time Velocity Viewer CCAR

Advanced

- Sea Surface Height Anomaly PO.DAAC
- Rain climatologies from dual frequency altimeters CERSAT
- Envisat Interim Geophysical Data Records ESA
- RADS ERS-2 DEOS
- RADS Geosat DEOS

Experts

- Envisat Sensor Geophysical Data Records ESA
- Envisat RA-2 wind/wave product for Meteo users ESA
- ERS RA Waveform Product ESA
- WVFDР POSEIDON: Waveforms (extracted from SGDR) AVISO
- ERS-2 Ocean PRoducts-2 CERSAT

Documentation

- (M)SLA and (M)ADT Near-Real Time and Delayed Time Products AVISO
- Jason-1 Sea Surface Height Anomaly Product - JPL/PO.DAAC User's Reference Manual PO.DAAC
- Level 3 rain products from dual frequency altimeters: RAIN-ALT products - User Manual CERSAT
- Altimeter & Microwave Radiometer ERS Products - User Manual CERSAT
- Altimeter waveform product ALT.WAP compact user guide ESA
- EnviView User Guide ESA
- RA2-MWR Product Handbook ESA
Software

- **PublicReadBinaries** AVISO
- **SSHA software** PO.DAAC
- **OPR reading software** CERSAT
- **Modified Chelton-Wentz model** DEOS
- **EnviView** ESA
- **Envisat L2 RA2-MWR Products Read and Write Software** ESA
- **Convert programs for waveforms POSEIDON products** AVISO
Delayed Time Maps of Sea Level Anomalies Upd and geostrophic velocity anomalies

Product description

PRODUCT TYPE data
INPUT DATA GDR, OPR
OUTPUT TYPE gridded

SATELLITE Jason-1, Envisat, ERS 1/2, GFO, Topex/Poseidon
AGENCIES CNES, ESA, NASA, NOAA, US NAVY
GRID TYPE cartesian, mercator

CONTENTS Multimission gridded sea surface heights computed with respect to a seven-year mean. In delayed time, two types of products are available: "Ref" (Reference) series: homogeneous datasets based on two satellites (Topex/Poseidon, Jason-1 + ERS, Envisat) with the same groundtrack. Sampling is stable in time. "Upd" (Updated) series: up-to-date datasets with up to four satellites at a given time (adding GFO and/or Topex/Poseidon on its new orbit). Sampling and Long Wavelength Errors determination are improved, but quality of the series is not homogeneous. This series belongs to the second category. This product is provided with corresponding geostrophic currents and formal mapping error files.

APPLICATIONS ● mesoscale oceanography
● ocean circulation
● ocean variability
● climate

USER beginner

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE 82.0° -180.0° 180.0° -82.0°

SPATIAL RESOLUTION 1/4 degree
REFERENCE SURFACE ● mean profile

TEMPORAL COVERAGE 1992-10-01 - onGoing
QUALITY CONTROL

PARAMETERS ● sea_surface_height_above_sea_level,m,CF
● surface_eastward_geostrophic_sea_water_velocity,m s-1,CF
● surface_northward_geostrophic_sea_water_velocity,m s-1,CF
Mention: "The altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from Cnes".

Copyright: 2005-2006 CLS

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>3 Mb</td>
<td>NetCDF 3.5</td>
<td>name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/</td>
<td>free</td>
</tr>
<tr>
<td>HTTP</td>
<td></td>
<td>Live Access Server 6.3</td>
<td>name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/</td>
<td>free</td>
</tr>
<tr>
<td>HTTP</td>
<td></td>
<td>Opendap</td>
<td>name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/</td>
<td>free</td>
</tr>
</tbody>
</table>

Related products and links

- User's manual
- PublicReadDelivery
- Ssalto/Duacs products web portal

Last update: 2006-09-26
(M)SLA and (M)ADT Near-Real Time and Delayed Time Products

Product description

PRODUCT TYPE | document
DATA DOCUMENTED | AVISO Ssalto/Duacs products

SATELLITE
- Jason-1
- Envisat
- ERS 1/2
- GFO
- Topex/Poseidon
- merged (all)

AGENCIES
- CNES
- ESA
- NASA
- NOAA
- US NAVY

CONTENTS
Ssalto/Duacs User Handbook for multi-mission along-track and gridded products. This document refers to Near Real Time/Delayed Time Sea Level Anomalies and Absolute Dynamic Topographies provided by the Ssalto/Duacs processing system and distributed by Aviso.

APPLICATIONS
- mesoscale oceanography
- ocean circulation
- ocean variability
- climate

USER
- beginner

GEOGRAPHICAL SCALE | global
GEOGRAPHICAL COVERAGE | 180.0°
-82.0°

REFERENCE SURFACE
- mean profile
- geoid

PARAMETERS
- sea_surface_height_above_sea_level, m, CF
- surface_eastward_geostrophic_sea_water_velocity, m s-1, CF
- surface_northward_geostrophic_sea_water_velocity, m s-1, CF
- sea_surface_height_above_geoid, m, CF
- surface_eastward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s-1, CF
- surface_northward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s-1, CF

UPDATED | asNeeded
BY
name : AVISO
email adress : aviso@cls.fr
web site : http://www.aviso.oceanobs.com
"The altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from Cnes."

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>180 KB</td>
<td>PDF</td>
<td>name : AVISO</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aviso@cls.fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>http://www.aviso.oceanobs.com/</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- Delayed Time Maps of Sea Level Anomalies Upd and geostrophic velocity anomalies
- Delayed Time Maps of Absolute Dynamic Topography Upd and absolute geostrophique velocities
- Near Real Time Maps of Sea Level Anomalies and geostrophic velocity anomalies
- PublicReadBinaries
- Ssalto/Duacs products web portal

Last update: 2006-10-03
Delayed Time Maps of Absolute Dynamic Topography Upd and absolute geostrophic velocities

Product description

PRODUCT TYPE data
INPUT DATA GDR, OPR
OUTPUT TYPE gridded

SATELLITE merged (all)
AGENCIES CNES, ESA, NASA, NOAA, US NAVY
GRID TYPE mercator

CONTENTS Multimission gridded sea surface heights above geoid; dynamic topography is the sum of sea level anomaly (SLA) and mean dynamic topography (MDT, Rio05 here). In delayed time, two types of products are available: "Ref" (Reference) series: homogeneous datasets based on two satellites (Topex/Poseidon, Jason-1 + ERS, Envisat) with the same groundtrack. Sampling is stable in time. "Upd" (Updated) series: up-to-date datasets with up to four satellites at a given time (adding GFO and/or Topex/Poseidon on its new orbit). Sampling and Long Wavelength Errors determination are improved, but quality of the series is not homogeneous. This series belongs to the second category. This product is provided with corresponding geostrophic currents.

APPLICATIONS ocean circulation
USER beginner

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE 82.0° -180.0° → 180.0° -82.0°

SPATIAL RESOLUTION 1/3 degree
REFERENCE SURFACE geoid

TEMPORAL COVERAGE 1992-10-01 - onGoing
QUALITY CONTROL

PARAMETERS
- sea_surface_height_above_geoid, m, CF
- surface_eastward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s⁻¹, CF
- surface_northward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s⁻¹, CF

UPDATED everyTwoMonths
BY name: AVISO
email: aviso@cls.fr
web site: http://www.aviso.oceanobs.com

MENTION “The altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from Cnes.”

COPYRIGHT 2005-2006 CLS

Delivery
Resource Volume Format Distributed by Licence/conditions

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
| FTP | 2 Mb (gzip) | NetCDF 3.5 | name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/ | free |
| HTTP | Live Access Server 6.3 | name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/ | free |
| HTTP | Opendap | name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/ | free |

Related products and links

- [User's manual](#)
- [PublicReadBinaries](#)
- [Ssalto/Duacs products web portal](#)

Last update: 2006-09-29
PublicReadBinaries

Product description

PRODUCT TYPE software DATA HANDLED AVISO NetCDF products

SATELLITE Jason-1 CONTRACTOR CNES
 Envisat ESA
 ERS 1/2 NASA
 GFO NOAA
 Topex/Poseidon US NAVY
 merged (all)

CONTENTS Read programs for Ssalto/Duacs NetCDF gridded and along-track products. The source code is also provided; it contains read/write libraries plus sample ascii dump programs in C/Fortran.

APPLICATIONS
- mesoscale oceanography
- ocean circulation
- ocean variability
- climate

USER beginner

GEOGRAPHICAL SCALE global GEOGRAPHICAL COVERAGE 82.0°
-180.0° 180.0°
-82.0°

TEMPORAL COVERAGE - onGoing REFERENCE SURFACE ● mean profile ● geoid

PARAMETERS
- sea_surface_height_above_sea_level, m, CF
- surface_eastward_geostrophic_sea_water_velocity, m s-1,CF
- surface_northward_geostrophic_sea_water_velocity, m s-1,CF
- sea_surface_height_above_geoid, m, CF
- surface_eastward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s-1, CF
- surface_northward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s-1, CF

UPDATED asNeeded BY name : AVISO
 email adress : aviso@cls.fr
 web site : http://www.aviso.oceanobs.com
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>OS/Language</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
| FTP | 515 KB (Zip) | MS Windows | name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/ | free |
| FTP | 644 KB (tar+gzip) | Sun OS | name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/ | free |
| FTP | 230 KB (tar+gzip) | Linux | name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/ | free |
| FTP | 86 KB (tar+gzip) | Source code | name: AVISO
email adress: aviso@cls.fr
web site: http://www.aviso.oceanobs.com/ | free |

Related products and links

- [Delayed Time Maps of Sea Level Anomalies Upd and geostrophic velocity anomalies](#)
- [Delayed Time Maps of Absolute Dynamic Topography Upd and absolute geostrophique velocities](#)
- [Near Real Time Maps of Sea Level Anomalies and geostrophic velocity anomalies](#)
- [Near-real time maps of significant wave height and wind speed modulus](#)
- [User's manual](#)
- [Ssalto/Duacs products web portal](#)

Last update: 2006-10-02
Near Real Time Maps of Sea Level Anomalies and geostrophic velocity anomalies

Product description

PRODUCT TYPE: data
INPUT DATA: GDR, OPR
OUTPUT TYPE: gridded

SATELLITE: Jason-1, Envisat, ERS 1/2, GFO, Topex/Poseidon
AGENCIES: CNES, ESA, NASA, NOAA, US Navy
GRID TYPE: cartesian, mercator

CONTENTS: Multimission gridded sea surface heights computed with respect to a seven-year mean. This product is provided with corresponding geostrophic currents and formal mapping error files.

APPLICATIONS: operational oceanography, mesoscale oceanography, ocean circulation, ocean variability, climate

USER: beginner

GEOGRAPHICAL SCALE: global
GEOGRAPHICAL COVERAGE: 82.0° -180.0° 180.0° -82.0°

SPATIAL RESOLUTION: 1/4 degree, 1/3 degree, 1 degree
REFERENCE SURFACE: mean profile

TEMPORAL COVERAGE: 2001-08-01 - onGoing

PARAMETERS: sea_surface_height_above_sea_level, m, CF
surface_eastward_geostrophic_sea_water_velocity, m s-1,CF
surface_northward_geostrophic_sea_water_velocity, m s-1,CF

UPDATED: daily
BY: AVISO
name: AVISO
email address: aviso@cls.fr
web site: http://www.jason.oceanobs.com

MENTION: "The altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from Cnes."

COPYRIGHT: 2005-2006 CLS

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>

| **FTP** | **1.6 Mb (gzip)** | **NetCDF 3.5** | name : AVISO
email address : aviso@cls.fr
web site : http://www.aviso.oceanobs.com/ | Ssalto/Duacs NRT data are available via FTP. User identification and password are required for data lower than 1 month. These data are distributed only for scientific applications (GodaeGlobal Ocean Data Assimilation Experiment, seasonal/climate prediction centers) provided that a data use agreement is signed with Cnes. Data older than one month are freely available. CLS remains in charge of the commercial applications of these near-real time products. |
|---|---|---|---|---|
| **HTTP** | **Live Access Server 6.3** | name : AVISO
email address : aviso@cls.fr
web site : http://www.aviso.oceanobs.com/ | free |
| **HTTP** | **Opendap** | name : AVISO
email address : aviso@cls.fr
web site : http://www.aviso.oceanobs.com/ | free |

Related products and links

- User's manual
- PublicReadDelivery
- Ssalto/Duacs products web portal

Last update: 2006-09-29
Near-real time maps of significant wave height and wind speed modulus

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>INPUT DATA</th>
<th>OUTPUT TYPE</th>
<th>SATELLITE</th>
<th>AGENCIES</th>
<th>GRID TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Last 2 days of IGDRs</td>
<td>gridded</td>
<td>merged (all)</td>
<td>CNES, ESA, NASA, NOAA, US NAVY</td>
<td>cartesian</td>
</tr>
</tbody>
</table>

CONTENTS
This product is based on the last 2 days of IGDR data available for each satellite; a merged map is generated if a minimum of 2 missions are available. Data are cross-calibrated using Jason-1 as reference mission. First, sigma0 and waves histograms are calibrated, then the Jason-1 wind algorithm is applied to crosscalibrated sigma0. The resulting map may be improved in case of additional mission availability: in that situation a new map will be provided, replacing the "old" one. Please note that a monomission product is also distributed by AVISO.

APPLICATIONS
- meteorology
- ocean-atmosphere gas transfers

USER
beginner

GEOGRAPHICAL SCALE
global

GEOGRAPHICAL COVERAGE
-82.0° - 180.0° - 180.0° - 82.0°

SPATIAL RESOLUTION
1 degree

REFERENCE SURFACE

TEMPORAL COVERAGE
2005-12-11 - onGoing

QUALITY CONTROL

PARAMETERS
- significant_height_of_wind_and_swell_waves, m, CF
- wind_speed, ms-1, CF

UPDATED
daily

name : AVISO
email adress : aviso@cls.fr
web site : http://www.aviso.oceanobs.com
The altimeter products were produced and distributed by Aviso, as part of the Ssalto ground processing segment.

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>140 KB (gzip)</td>
<td>NetCDF 3.5</td>
<td>name : AVISO email adress : aviso@cls.fr web site :</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>http://www.aviso.oceanobs.com/</td>
<td></td>
</tr>
<tr>
<td>HTTP</td>
<td></td>
<td>PS</td>
<td>name : AVISO email adress : aviso@cls.fr web site :</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>http://www.aviso.oceanobs.com/</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- [PublicReadBinaries](#)
- [Further information and references](#)

Last update: 2006-11-03
Near-Real Time Maps of Absolute Dynamic Topography and absolute geostrophic velocities

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT DATA GDR, OPR</td>
<td></td>
</tr>
<tr>
<td>OUTPUT TYPE gridded</td>
<td></td>
</tr>
<tr>
<td>SATELLITE merged (all)</td>
<td></td>
</tr>
<tr>
<td>AGENCIES CNES, ESA, NASA, NOAA, US NAVY</td>
<td></td>
</tr>
<tr>
<td>GRID TYPE mercator</td>
<td></td>
</tr>
<tr>
<td>CONTENTS Multimission gridded sea surface heights above geoid; dynamic topography is the sum of sea level anomaly (SLA) and mean dynamic topography (MDT, Rio05 here). This product is provided with corresponding geostrophic currents.</td>
<td></td>
</tr>
<tr>
<td>APPLICATIONS ● ocean circulation USER beginner</td>
<td></td>
</tr>
<tr>
<td>GEOGRAPHICAL SCALE global</td>
<td></td>
</tr>
<tr>
<td>GEOGRAPHICAL COVERAGE 82.0° -180.0° 180.0° -82.0°</td>
<td></td>
</tr>
<tr>
<td>SPATIAL RESOLUTION 1/3 degree</td>
<td></td>
</tr>
<tr>
<td>REFERENCE SURFACE ● geoid</td>
<td></td>
</tr>
<tr>
<td>TEMPORAL COVERAGE 2001-08-22 - onGoing</td>
<td></td>
</tr>
<tr>
<td>PARAMETERS ● sea_surface_height_above_geoid, m, CF ● surface_eastward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s-1, CF ● surface_northward_geostrophic_sea_water_velocity_assuming_sea_level_for_geoid, m s-1, CF</td>
<td></td>
</tr>
<tr>
<td>UPDATED daily</td>
<td></td>
</tr>
<tr>
<td>BY name: AVISO email adress: aviso@cls.fr web site: http://www.aviso.oceanobs.com</td>
<td></td>
</tr>
<tr>
<td>MENTION "The altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from Cnes".</td>
<td></td>
</tr>
<tr>
<td>COPYRIGHT 2005-2006 CLS</td>
<td></td>
</tr>
</tbody>
</table>

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
FTP

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type (gzip)</th>
<th>Protocol</th>
<th>NetCDF Version</th>
<th>Contact Information</th>
<th>Data Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Mb</td>
<td>FTP</td>
<td>3.5</td>
<td>name: AVISO</td>
<td>Ssalto/Duacs NRT data are available via FTP. User identification and password are required for data lower than 1 month. These data are distributed only for scientific applications (GodaeGlobal Ocean Data Assimilation Experiment, seasonal/climate prediction centers) provided that a data use agreement is signed with Cnes. Data older than one month are freely available. CLS remains in charge of the commercial applications of these near-real time products.</td>
</tr>
<tr>
<td></td>
<td>(gzip)</td>
<td></td>
<td></td>
<td>email address: aviso@cls.fr</td>
<td>web site: http://www.aviso.oceanobs.com/</td>
</tr>
</tbody>
</table>

HTTP

<table>
<thead>
<tr>
<th>Name</th>
<th>Protocol</th>
<th>Contact Information</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Live Access Server 6.3</td>
<td>name: AVISO</td>
<td>email address: aviso@cls.fr</td>
<td>free</td>
</tr>
<tr>
<td>HTTP Opendap</td>
<td>name: AVISO</td>
<td>email address: aviso@cls.fr</td>
<td>free</td>
</tr>
</tbody>
</table>

Related products and links

- **User's manual**
- **PublicReadDelivery**
- **Ssalto/Duacs products web portal**

Last update: 2006-10-12
Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>INPUT DATA</th>
<th>OUTPUT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>(M)GDR</td>
<td>gridded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATELLITE</th>
<th>AGENCIES</th>
<th>GRID TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topex/Poseidon</td>
<td>CNES, NASA</td>
<td>cartesian</td>
</tr>
</tbody>
</table>

CONTENTS

This product contains sea surface height (SSH) data from TOPEX/POSEIDON and sea surface temperature (SST) data from AVHRR on the NOAA-n satellites. Both datasets are provided on the same two grid patterns: 1) 0.5 degree grid in latitude and longitude, with gaps where no data are present; 2) 1.0 degree grid, with all gaps filled in by interpolation. SSHs are given in millimeters, for Oct 1992 to Dec 2001 (later grids available online), averaged over 10 days, referenced to the 1993-2001 mean, with tidal and inverted barometer effects removed, all instrument and path corrections applied based on the TOPEX/POSEIDON MGDR-B, except for TMR drift and IB. These two datasets or "DVD Folders" are part of a larger set (DVD-ROM set), produced under the guidance of the Data Products Committee of the World Ocean Circulation Experiment. The larger set includes in-situ data on ocean temperature, salinity, tracers, currents (from current meters, ADCP, floats and drifters), sea level, surface meteorology, as well as a comprehensive overview of data collection during WOCE. This is version 3 of the WOCE datasets. These datasets replace the previous version 1 (PO.DAAC product #100, which included gridded wind data) and version 2 (PO.DAAC product #127). The complete WOCE v3 collection can be purchased from the National Oceanographic Data Center (http://www.nodc.noaa.gov). These two datasets, apart from the WOCE v3 collection, are available from the JPL PO.DAAC (http://podaac.jpl.nasa.gov). A complementary "DVD Folder" produced by CERSAT (http://www.ifremer.fr/cersat), and also released as part of the WOCE v3 DVD-ROM set, features wind speed and stress vectors from the ERS-1 and ERS-2 scatterometers for August 1991 to January 2001, as well as ADEOS/NSCAT winds for September 1996 to June 1997 and QuikSCAT/SeaWinds for July 1999 to today. The CERSAT fields are interpolated every 1 degree (0.5 degree for QuikSCAT) over three time averaging periods - day (QuikSCAT only), week and month - with an objective mapping scheme that ensures uniform smoothness and no empty grid nodes, and include estimates of wind divergence and stress curl.

APPLICATIONS

- mesoscale oceanography
- ocean circulation
- ocean variability
- climate

USER

beginner

GEOGRAPHICAL SCALE

global

GEOGRAPHICAL COVERAGE

-66.0° -180.0° 180.0° -66.0°

SPATIAL RESOLUTION

1/2 degree 1 degree

REFERENCE SURFACE

mean profile

TEMPORAL COVERAGE

1992-10-01 - 2001-12-01

QUALITY CONTROL
PARAMETERS

- sea_surface_height_above_sea_level, m, CF

UPDATED

unknown

BY

name: JPL/PO.DAAC
email address: webmaster@podaac.jpl.nasa.gov
web site: http://podaac.jpl.nasa.gov/index.html

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>165 KB</td>
<td>NetCDF</td>
<td>name: JPL/PO.DAAC email address: webmaster@podaac.jpl.nasa.gov web site: http://podaac.jpl.nasa.gov/index.html</td>
<td>free</td>
</tr>
<tr>
<td>HTTP</td>
<td>60 KB</td>
<td>GIF</td>
<td>name: JPL/PO.DAAC email address: webmaster@podaac.jpl.nasa.gov web site: http://podaac.jpl.nasa.gov/index.html</td>
<td>free</td>
</tr>
</tbody>
</table>

Related products and links

- Topex/Poseidon Sea Level Grids Description

Last update: 2006-11-02
Gulf of Mexico Near Real-Time Velocity Viewer

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>data</th>
<th>INPUT DATA</th>
<th>IGDR</th>
<th>OUTPUT TYPE</th>
<th>gridded</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATELLITE</td>
<td>merged (all)</td>
<td>AGENCIES</td>
<td>CNES</td>
<td>ESA, NASA, NOAA, US NAVY</td>
<td></td>
</tr>
<tr>
<td>CONTENTS</td>
<td>A viewer for Gulf of Mexico velocity vectors. The maps are produced from Jason, TOPEX/POSEIDON (T/P), Geosat Follow-On (GFO), ERS-2 and ENVISAT altimeter data processed in near real-time, usually within 12 to 36 hours of overflight. This quick-look processing is designed to retain the mesoscale sea surface height anomalies associated with fronts and eddies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| APPLICATIONS | • operational oceanography
• mesoscale oceanography
• ocean circulation
• ocean variability
• climate |
| USER | beginner |
| GEOGRAPHICAL SCALE | regional |
| GEOGRAPHICAL COVERAGE | 31° |
| SPATIAL RESOLUTION | 1/4 degree |
| TEMPORAL COVERAGE | 1993-01-01 - onGoing |
| QUALITY CONTROL | |
| PARAMETERS | • surface_eastward_geostrophic_sea_water_velocity, m s⁻¹, CF
• surface_northward_geostrophic_sea_water_velocity, m s⁻¹, CF |
| UPDATED | daily |
| BY | name: CCAR
email address: real-time@ccar.colorado.edu
web site: http://argo.colorado.edu/~realtime/gom-real-time_velmag/ |

MENTION
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>100 KB</td>
<td>GIF</td>
<td>name: CCAR</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress: real-time@ccar.colorado.edu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site: http://argo.colorado.edu/~realtime/welcome/</td>
<td></td>
</tr>
<tr>
<td>HTTP</td>
<td>1.5 MB</td>
<td>PostScript</td>
<td>name: CCAR</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress: real-time@ccar.colorado.edu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site: http://argo.colorado.edu/~realtime/welcome/</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

•

Last update: 2006-08-31
Sea Surface Height Anomaly (NASA/PO.DAAC)

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT DATA</td>
<td>GDR</td>
</tr>
<tr>
<td>OUTPUT TYPE</td>
<td>along-track</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATELLITE</th>
<th>Jason-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENCIES</td>
<td>CNES</td>
</tr>
<tr>
<td>GRID TYPE</td>
<td>NASA</td>
</tr>
</tbody>
</table>

CONTENTS

Sea Surface Height Anomaly product includes along-track sea surface height above Mean Sea Surface, Significant Wave Height, Inverted Barometer, Sigma Naught, Total Electron Content, Ocean Depth, and Mean Sea Surface. The Sea Surface Height Anomaly, the principal parameter in this product, represents the difference between the best estimate of the sea surface height and a mean sea surface. The sea surface height used was corrected for atmospheric effects (ionosphere, wet and dry troposphere), effects due to surface conditions (electromagnetic bias), and other contributions (ocean tides, pole tide, and inverse barometer). Because some users may want to provide their own values for the mean sea surface and inverse barometer effect, the values used in calculating this SSHA are included in the data product. The Jason-1 Sea Surface Height Anomaly product is generated from the Jason-1 Geophysical Data Record (J1 GDR). There are 127 orbits per cycle and each orbit has a period of 112 minutes. The ground track of the orbits are about 315 km apart at the equator. Along track measurements are approximately 1 sec and 6 km apart. The TOPEX/POSEIDON Sea Surface Height Anomaly product is generated from the TOPEX/POSEIDON Merged Geophysical Data Record, Generation B (MGDRB), Reference 1. It is organized as 10 day (actually 9.915 days) repeat cycles, the same as the MGDRB. There are 127 orbits per cycle and each orbit has a period of 112 minutes. The ground track of the orbits are about 315 km apart at the equator. Along track measurements are approximately 1 sec and 6 km apart. Each orbit is composed of 2 passes, one ascending from -66 deg to +66 deg latitude and the other descending from +66 deg to -66 deg. The passes are organized this way to avoid data boundaries in the middle of the oceans. All odd-numbered passes are ascending and all even-numbered passes are descending. It is organized as 10 day repeat cycles containing a maximum of 254 pass files per cycle, the same as the J1 GDR and TP MGDRB. There is a one to one correspondence between the SSHA and J1/TP GDR/MGDRB cycles and pass files. Each pass file of the SSHA consists of header records followed by data records containing 11 parameters: time of record in days and milliseconds, latitude, longitude, sea surface height anomaly, significant wave height, inverse barometer, sigma0, total electron content of the atmosphere, ocean depth, and mean sea surface. It is swath data and no images are provided with this product.

Calculation of the sea surface height anomaly is derived from J1/TP GDR/MGDRB parameters using a set of editing criteria (see User's reference manual). Jason-1 Sea Surface Height Anomaly (J1SSHA) product and TOPEX/POSEIDON Sea Surface Height Anomaly (TPSSHA) product are compatible; they have the same number of header records, data records, and data sizes. They can both be read by the same read software.

APPLICATIONS

- mesoscale oceanography
- ocean circulation
- ocean variability
- climate

USER

advanced

GEOGRAPHICAL SCALE

global

GEOGRAPHICAL COVERAGE

- 66.0°
- 180.0°
- -180.0°
- -66.0°
Spatial Resolution
6 Km

Reference Surface
- mean sea surface

Temporal Coverage
1992-09-22 - onGoing

Quality Control
- name: PO.DAAC
- email address: podaac@podaac.jpl.nasa.gov

Parameters
- sea_surface_height_above_sea_level, m, CF

Updated
everyTwoMonths

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
| FTP | 12 MB (gzip) | Binary | name: JPL/PO.DAAC
email address: podaac@podaac.jpl.nasa.gov
| HTTP | 130 KB | GIF | name: PO.DAAC NEREIDS
email address: podaac@podaac.jpl.nasa.gov
web site: http://nereids.jpl.nasa.gov/cgi-bin/nereids.cgi | free |

Related products and links
- SSHA software
- Product FAQ
- What's new
- References

Last update: 2006-09-26
Jason-1 Sea Surface Height Anomaly product - User's Reference Manual

Product description

PRODUCT TYPE document
DATA DOCUMENTED JPL/PODAAC SSHA products

SATELLITE Jason-1
AGENCIES CNES NASA

CONTENTS This document describes Version 2 of JASON-1 Sea Surface Height Anomaly (J1SSHA) datasets produced by the Jet Propulsion Laboratory, Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC).

APPLICATIONS
● mesoscale oceanography
● ocean circulation
● ocean variability
● climate

USER advanced

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE 66.0°
-180.0° 180.0° -66.0°

TEMPORAL COVERAGE 2002-01-15 - onGoing
REFERENCE SURFACE ● mean sea surface

PARAMETERS ● sea_surface_height_above_sea_level, m, CF

UPDATED asNeeded
BY name : PO.DAAC
email adress : podaac@podaac.jpl.nasa.gov
web site : http://podaac.jpl.nasa.gov/index.html

MENTION COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>

Radar Altimetry Tutorial
Related products and links

- Sea Surface Height Anomaly
- Product FAQ
- What's new
- References

Last update: 2006-11-03

Product description

PRODUCT TYPE document
DATA DOCUMENTED JPL/PODAAC SSHA products
SATELLITE Topex/Poseidon
AGENCIES CNES
NASA

CONTENTS This manual describes Version 2 of TOPEX/POSEIDON Sea Surface Height Anomaly (TPSSHA) datasets produced and distributed by the Jet Propulsion Laboratory, Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC).

APPLICATIONS
● mesoscale oceanography
● ocean circulation
● ocean variability
● climate

USER advanced

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE 66.0°
-180.0° 180.0°
-66.0°

TEMPORAL COVERAGE 1992-09-22 - 2005-10-08
REFERENCE SURFACE ● mean sea surface

PARAMETERS ● sea_surface_height_above_sea_level, m, CF

UPDATED asNeeded
BY name: PO.DAAC
e-mail adress: podaac@podaac.jpl.nasa.gov
web site: http://podaac.jpl.nasa.gov/index.html

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related products and links

- Sea Surface Height Anomaly
- What's new
- References

Last update: 2006-09-29
Sea Surface Height Anomaly software

Product description

PRODUCT TYPE software
DATA HANDLED JPL/PODAAC SSHA products
SATELLITE Jason-1
CONTRACTOR CNES
Topex/Poseidon NASA
CONTENTS
Sea Surface Height Anomaly read software displays the header records and the parameters of each data record.

APPLICATIONS
- mesoscale oceanography
- ocean circulation
- ocean variability
- climate
USER beginner

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE
66.0° -180.0° 180.0° -66.0°

TEMPORAL COVERAGE 1992-09-22 - onGoing
REFERENCE SURFACE mean profile

PARAMETERS
- sea_surface_height_above_sea_level, m, CF

UPDATED unknown
BY
name: PO.DAAC
email adress: podaac@podaac.jpl.nasa.gov
web site: http://podaac.jpl.nasa.gov/index.html

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>OS/Language</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
| FTP | | C codes for SSHA | name: JPL/PO.DAAC
email adress: podaac@podaac.jpl.nasa.gov
web site: http://podaac.jpl.nasa.gov/index.html | free |
Related products and links

- [Sea Surface Height Anomaly](http://podaac.jpl.nasa.gov/index.html)

Last update: 2006-11-09
Rain climatologies from dual frequency altimeters

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>INPUT DATA</th>
<th>OUTPUT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>GDRs, M-GDRs</td>
<td>gridded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATELLITE</th>
<th>AGENCIES</th>
<th>GRID TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envisat</td>
<td>CNES</td>
<td>cartesian</td>
</tr>
<tr>
<td>Jason-1</td>
<td>ESA</td>
<td></td>
</tr>
<tr>
<td>Topex/Poseidon</td>
<td>NASA</td>
<td></td>
</tr>
<tr>
<td>merged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS
Precipitations products from the available dual-frequency altimeters. Three different data sets are available: the raw altimeter data samples (by quarter), the mean rain rate fields and the mean rain cell length fields. Mean rain rate fields are provided as monthly, 3-monthly and annual averages; rain cell lengths are available for 3-monthly and annual averages. The individual rain samples are also available as netCDF files (samples directory on ftp).

APPLICATIONS
- meteorology
- ocean-atmosphere gas transfers
- calval

USER
beginner

GEOGRAPHICAL SCALE
global

GEOGRAPHICAL COVERAGE
82.0°
-180.0°
180.0°
-82.0°

SPATIAL RESOLUTION
2.5 degree

TEMPORAL COVERAGE
1993-01-01 - onGoing

PARAMETERS
- ku_attenuation, dB
- sigma0_Ku, dB
- sigma0_C, dB
- freezing_level_altitude, m
- freezing_level_altitude_clim, m
- rain_rate, mm hr-1
- brightness_temperature_18GH, K
- brightness_temperature_21GH, K
- brightness_temperature_37GH, K
- rain_rate, mm day-1
- rain_mu_parameter, mm day-1
- freezing_level_altitude, mm day-1
- rain_probability
- rain_pdf
- rain_cell_rate, mm hr-1
- rain_cell_length, km
- rain_pdf_slope, km-1

Updated biannually by name: CERSAT
email address: fpaf@ifremer.fr

**MENTION
COPYRIGHT**

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>40 KB</td>
<td>NetCDF 3.5</td>
<td>name: CERSAT email address: fpaf@ifremer.fr web site: http://www.ifremer.fr/cersat/en/welcome.htm</td>
<td>free</td>
</tr>
<tr>
<td>HTTP</td>
<td></td>
<td>PNG</td>
<td>name: CERSAT email address: fpaf@ifremer.fr web site: http://www.ifremer.fr/cersat/en/welcome.htm</td>
<td>free</td>
</tr>
</tbody>
</table>

Related products and links

- Level 3 rain products from dual frequency altimeters: RAIN-ALT products

Last update: 2006-11-06
Level 3 rain products from dual frequency altimeters: RAIN-ALT products

Product description

PRODUCT TYPE document
DATA DOCUMENTED CERSAT RAIN-ALT products

SATELLITE Envisat
JASON-1
TOPEx/Poseidon
AGENCIES CNES
ESA
NASA

CONTENTS The RAIN-ALT product manual presents the precipitations products from the available dual-frequency altimeters.

APPLICATIONS
- meteorology
- ocean-atmosphere gas transfers
- calval

USER beginner

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE
- 82.0°
- 180.0°
- -180.0°
- -82.0°

TEMPORAL COVERAGE 1992-10-01 - onGoing
REFERENCE SURFACE

PARAMETERS
- ku_attenuation, dB
- sigma0_Ku, dB
- sigma0_C, dB
- freezing_level_altitude, m
- freezing_level_altitude_clim, m
- rain_rate, mm hr-1
- brightness_temperature_18GH, K
- brightness_temperature_21GH, K
- brightness_temperature_37GH, K
- rain_rate, mm day-1
- rain.mu parameter, mm day-1
- freezing_level.altitude, mm day-1
- rain.probability
- rain.pdf
- rain.cell_rate, mm hr-1
- rain.cell_length, km
- rain.pdf_slope, km-1

UPDATED asNeeded **BY** name: CERSAT
email adress: fpaf@ifremer.fr

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>180 KB</td>
<td>PDF</td>
<td>name: AVISO</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aviso@cls.fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>http://www.aviso.oceanobs.com/</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- Rain climatologies from dual frequency altimeters

Last update: 2006-10-03
Envisat Interim Geophysical Data Record (IGDR)

Product description

PRODUCT TYPE data
INPUT DATA FDGDR
OUTPUT TYPE along-track

SATELLITE Envisat
AGENCIES ESA
GRID TYPE

CONTENTS This product is generated within a few days (3 to 5), using restituted auxiliary data (meteorological fields, pole location, DORIS ionospheric data) and a DORIS preliminary orbit. The product is re-tracked (waveform data are fully processed in the ground processor to extract the geophysical parameters) and mainly contains datation, geo-location, output from re-trackers (range, wind speed, significant wave height, etc.), at 1 Hz plus some 18 Hz parameters (range, orbital altitude). In order to retrieve the geophysical parameters over all types of surface (ocean, ice, sea-ice, etc.), four specialised re-trackers are continuously run in parallel (over all surfaces): Ocean re-tracker, Ice-1 re-tracker, Ice-2 re-tracker and Sea-Ice re-tracker.

APPLICATIONS
- hydrology
- ice
- meteorology
- ocean-atmosphere gas transfers

USER advanced

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE
- 82.0°
- 180.0°
- 180.0°
- -82.0°

SPATIAL RESOLUTION 19 Km
REFERENCE SURFACE
- reference ellipsoid

TEMPORAL COVERAGE 2003-03-24 - onGoing
QUALITY CONTROL

PARAMETERS
- sea_surface_height_above_reference_ellipsoid, m, CF

UPDATED daily
BY
name: ESA
email adress: eoehelp@esa.int
web site: http://earth.esa.int/
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3 MB</td>
<td>Binary</td>
<td>name : ESA</td>
<td>by FTP, on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress : eohelp@esa.int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site : http://earth.esa.int</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- [Envisat RA2-MWR Product Handbook](#)
- [Envierview](#)
- [Envisat L2 Product Read and Write Software Release](#)

Last update: 2006-08-29
RA2-MWR Product Handbook

Product description

PRODUCT TYPE document **DATA DOCUMENTED** RA2-MWR products

SATELLITE Envisat **AGENCIES** ESA

CONTENTS This document provides information on Envisat RA2 and MWR data products format and their contents (instruments, measurements, algorithms used).

APPLICATIONS USER expert

GEOGRAPHICAL SCALE global **GEOGRAPHICAL COVERAGE** 82.0° 180.0° -180.0° -82.0°

TEMPORAL COVERAGE - onGoing **REFERENCE SURFACE** reference ellipsoid

PARAMETERS sea_surface_height_above_reference_ellipsoid, m, CF

UPDATED asNeeded **BY** name : ESA email adress : EOHelp@esa.int

web site : http://envisat.esa.int/

MENTION COPYRIGHT 2000-2006, European Space Agency, All rights reserved

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td></td>
<td>HTML</td>
<td>name : ESA email adress : EOHelp@esa.int web site : http://envisat.esa.int/</td>
<td>free</td>
</tr>
<tr>
<td>HTTP</td>
<td></td>
<td>PDF (zip)</td>
<td>name : ESA email adress : EOHelp@esa.int web site : http://envisat.esa.int/</td>
<td>free</td>
</tr>
</tbody>
</table>

Related products and links
Guide to programs to read and write Envisat altimetry products

Enviview

Last update: 2006-08-30
Guide to programs to read and write Envisat altimetry products

Product description

This document has the purpose to describe the three sets of programs developed for reading and writing Level 2 Envisat Altimetry Products.

APPLICATIONS USER

expert

GEOGRAPHICAL SCALE

global

GEOGRAPHICAL COVERAGE

82.0°

-180.0° – 180.0° – 82.0°

TEMPORAL COVERAGE

- onGoing

REFERENCE SURFACE

• reference ellipsoid

PARAMETERS

• sea_surface_height_above_reference_ellipsoid, m, CF

UPDATED

asNeeded

BY

name: ESA

email adress: EOHelp@esa.int

web site: http://envisat.esa.int/

MENTION

COPYRIGHT

2000-2006, European Space Agency, All rights reserved

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>96 KB</td>
<td>PDF</td>
<td>name: ESA</td>
<td>free</td>
</tr>
</tbody>
</table>

Related products and links

- Envisat Interim Geophysical Data Record (IGDR)
- Envisat Sensor Geophysical Data Records
- Envisat RA-2 wind/wave product for Meteo users
- Envisat L2 RA2-MWR Products Read and Write Software

Last update: 2006-08-30
Envisat Sensor Geophysical Data Record (SGDR)

Product description

PRODUCT TYPE | data
INPUT TYPE | along-track

SATELLITE | Envisat
AGENCIES | ESA
GRID TYPE |

CONTENTS
SGDR products provide averaged waveforms (at 18 Hz), individual waveforms (at 1800 Hz) and Geophysical Data Records using the best restituted auxiliary data (meteorological fields, solar activity indexes, pole location, platform data, DORIS ionospheric data) and a DORIS precise orbit. The product is re-tracked (waveform data are fully processed in the ground processor to extract the geophysical parameters) and mainly contains datation, geo-location, output from re-trackers (ie range, wind speed, significant wave height, etc.), at 1 Hz plus some 18 Hz parameters (range, orbital altitude). In order to retrieve the geophysical parameters over all types of surface (ocean, ice, sea-ice, etc.), four specialised re-trackers are continuously run in parallel (over all surfaces): Ocean re-tracker, Ice-1 re-tracker, Ice-2 re-tracker and Sea-Ice re-tracker.

APPLICATIONS
- re-tracking
- hydrology
- land
- ice
- meteorology
- ocean-atmosphere gas transfers

USER
expert

GEOGRAPHICAL SCALE | global
GEOGRAPHICAL COVERAGE | 82.0°
-180.0°
180.0°
-82.0°

SPATIAL RESOLUTION | 9 Km
REFERENCE SURFACE | reference ellipsoid

TEMPORAL COVERAGE | 2003-06-02 - onGoing
QUALITY CONTROL |

PARAMETERS
- sea_surface_height_above_reference_ellipsoid, m, CF
- altimeter_waveform
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3 MB</td>
<td>Binary</td>
<td>name: ESA</td>
<td>name: ESA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress: EOHelp@esa.int</td>
<td>email adress: EOHelp@esa.int</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site: http://envisat.esa.int/</td>
<td>web site: http://envisat.esa.int/</td>
</tr>
</tbody>
</table>

Related products and links

- Envisat RA2-MWR Product Handbook
- EnviView
- Envisat L2 Product Read and Write Software Release

Last update: 2006-08-29
EnviView

Product description

PRODUCT TYPE software **DATA HANDLED** Envisat PDS products

SATELLITE Envisat **CONTRACTOR** ESA

CONTENTS EnviView is a free application, that allows Envisat data users to open any Envisat data file, and examine its contents. It provides simple visualisation capabilities, and allows data to be exported to HDF for use in other software packages.

APPLICATIONS USER beginner

GEOGRAPHICAL SCALE global **GEOGRAPHICAL COVERAGE** 82.0° -180.0° 180.0° -82.0°

TEMPORAL COVERAGE - onGoing **REFERENCE SURFACE** ● reference ellipsoid

PARAMETERS ● sea_surface_height_above_reference_ellipsoid, m, CF ● altimeter_waveform

UPDATED unknown **BY** name : ESA email adress : eohelp@esa.int web site : http://earth.esa.int/

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>OS/Language</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.4 MB</td>
<td>MS Windows</td>
<td>name : ESA email adress : eohelp@esa.int web site : http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
<td>online registration</td>
<td></td>
</tr>
<tr>
<td>17.9 MB</td>
<td>UNIX</td>
<td>name : ESA email adress : eohelp@esa.int web site : http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
<td>online registration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name</td>
<td>email address</td>
<td>web site</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>47.5 MB</td>
<td>Linux</td>
<td>ESA</td>
<td>eohelp@esa.int</td>
<td>http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
</tr>
<tr>
<td>71.2 MB</td>
<td>HP-UX</td>
<td>ESA</td>
<td>eohelp@esa.int</td>
<td>http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
</tr>
<tr>
<td>45.3 MB</td>
<td>Solaris</td>
<td>ESA</td>
<td>eohelp@esa.int</td>
<td>http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
</tr>
<tr>
<td>19.6 MB</td>
<td>Mac OS</td>
<td>ESA</td>
<td>eohelp@esa.int</td>
<td>http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
</tr>
<tr>
<td>15.6 MB</td>
<td>Mac OS X</td>
<td>ESA</td>
<td>eohelp@esa.int</td>
<td>http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
</tr>
<tr>
<td>18.4 MB</td>
<td>Java platform</td>
<td>ESA</td>
<td>eohelp@esa.int</td>
<td>http://earth.esa.int/cgi-bin/dl_enviview.pl</td>
</tr>
</tbody>
</table>

Related products and links

- [EnviView User Guide](#)
- [Envisat Interim Geophysical Data Records](#)
- [Envisat Sensor Geophysical Data Records](#)
- [Envisat RA-2 wind/wave product for Meteo users](#)

Last update: 2006-10-23
EnviView User Guide

Product description

Product description

- **PRODUCT TYPE**: document
- **DATA DOCUMENTED**: EnviView software
- **SATELLITE**: Envisat
- **AGENCIES**: ESA

CONTENTS: This document provides a detailed guide to using the EnviView tool for viewing data from the Envisat mission. It explains how Envisat data can be extracted, decoded, and displayed using various visual representations, including images where appropriate, and exported in a variety of formats.

APPLICATIONS USER: beginner

GEOGRAPHICAL SCALE: global

GEOGRAPHICAL COVERAGE: 82.0° - 180.0° 180.0° -82.0°

TEMPORAL COVERAGE: onGoing

REFERENCE SURFACE: reference ellipsoid

PARAMETERS: sea_surface_height_above_reference_ellipsoid, m, CF, alimeter_waveform

UPDATED: asNeeded

BY: name: ESA
e-mail address: eohelp@esa.int
web site: http://earth.esa.int/

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>2.84 MB</td>
<td>PDF</td>
<td>name: ESA</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e-mail address: eohelp@esa.int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site: http://earth.esa.int/enviview/</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links
• EnviView
• Envisat Interim Geophysical Data Records
• Envisat Sensor Geophysical Data Records
• Envisat RA-2 wind/wave product for Meteo users

Last update: 2006-10-23
Envisat RA-2 wind/wave product for Meteo users (RA2_WWV_2P)

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>INPUT DATA</th>
<th>OUTPUT TYPE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>FDGDR</td>
<td>along-track</td>
<td>The data product represents a subset of FDGDR for near real time meteo and oceanographic applications. The file size is 0.5 Mbytes per orbit. Auxiliary date include Orbit state vectors (DORIS, FOS), RA2 and MWR characterisation data, Platform attitude, Gain calibration, USO frequency, ECMWF data, Time relation, Leap second.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATELLITE</th>
<th>AGENCIES</th>
<th>GRID TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envisat</td>
<td>ESA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
<th>USER</th>
</tr>
</thead>
<tbody>
<tr>
<td>meteorology</td>
<td>expert</td>
</tr>
<tr>
<td>ocean-atmosphere gas transfers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEOGRAPHICAL SCALE</th>
<th>GEOGRAPHICAL COVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>82.0°</td>
</tr>
<tr>
<td></td>
<td>-180.0°</td>
</tr>
<tr>
<td></td>
<td>180.0°</td>
</tr>
<tr>
<td></td>
<td>-82.0°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPATIAL RESOLUTION</th>
<th>REFERENCE SURFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Km</td>
<td>● reference ellipsoid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPORAL COVERAGE</th>
<th>QUALITY CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-03-24 - onGoing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>● sea_surface_wave_significant_height, m, CF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UPDATED</th>
<th>BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekly</td>
<td>name : ESA</td>
</tr>
<tr>
<td></td>
<td>email adress : eohelp@esa.int</td>
</tr>
<tr>
<td></td>
<td>web site : http://earth.esa.int</td>
</tr>
</tbody>
</table>

Copyright 2002-2006 Esa

Delivery
<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 MB</td>
<td>Envisat</td>
<td>name : ESA</td>
<td>FTP or media, on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eohelp@esa.int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>http://earth.esa.int/dataproducts/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 MB</td>
<td>BUFR</td>
<td>name : ESA</td>
<td>FTP or media, on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eohelp@esa.int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>http://earth.esa.int/dataproducts/</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- [Envisat RA2-MWR Product Handbook](#)
- [Enviview](#)
- [Envisat L2 Product Read and Write Software Release](#)

Last update: 2006-10-19
Envisat L2 RA2-MWR Products Read and Write Software

Product description

PRODUCT TYPE software **DATA HANDLED** Envisat RA2-MWR products

SATELLITE Envisat **CONTRACTOR** ESA

CONTENTS programs to read and write Envisat RA2-MWR products; the programs are implemented in C, IDL and Fortran 77

APPLICATIONS USER expert

GEOGRAPHICAL SCALE global **GEOGRAPHICAL COVERAGE** 82.0°

TEMPORAL COVERAGE - onGoing **REFERENCE SURFACE** ● reference ellipsoid

PARAMETERS ● sea_surface_height_above_reference_ellipsoid, m, CF

UPDATED asNeeded **BY** name : ESA email adress : EOHelp@esa.int web site : http://envisat.esa.int/

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>OS/Language</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>4.6 MB (tar+gzip)</td>
<td></td>
<td>name : ESA email adress : EOHelp@esa.int web site : http://envisat.esa.int/</td>
<td>free</td>
</tr>
</tbody>
</table>

Related products and links

- Envisat RA2-MWR Product Handbook
- Guide to programs to read and write Envisat altimetry products
- Envisat Interim Geophysical Data Records
- Envisat Sensor Geophysical Data Records
Envisat RA-2 wind/wave product for Meteo users

Last update: 2006-08-30
RADS ERS-2

Product description

PRODUCT TYPE	INPUT DATA	OUTPUT TYPE
data | along-track

SATELLITE | AGENCIES | GRID TYPE
ERS-2 | | cartesian

CONTENTS Radar Altimeter Database System ERS-2 product provide via your web browser an image output of selected parameters, or an ASCII output that you can download on your local system; geophysical corrections are available so that you can compute your own sea level anomaly, with a temporal or geographic extraction.

APPLICATIONS
● mesoscale oceanography
● ocean circulation
● ocean variability
● calval
● meteorology
● ocean-atmosphere gas transfers

USER advanced

GEOGRAPHICAL SCALE	GEOGRAPHICAL COVERAGE
global | 82.0°

-180.0° 180.0°
-82.0°

SPATIAL RESOLUTION	REFERENCE SURFACE

● TOPEX ellipsoid
● EGM96 geoid height
● GSFC00.1 mean sea surface height
● MSSCLS01 mean sea surface height
● GGM02C geoid height

TEMPORAL COVERAGE	QUALITY CONTROL
1995-04-29 - onGoing |

PARAMETERS
● sea_surface_height, m, CF
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>100 KB</td>
<td>GIF</td>
<td>name: DEOS/RADS
email adress: eelco@deos.tudelft.nl
web site: http://rads.tudelft.nl/rads/data/authentication.shtml</td>
<td>free (online registration)</td>
</tr>
<tr>
<td>HTTP</td>
<td>2 MB (tar+gzip)</td>
<td>ASCII</td>
<td>name: DEOS/RADS
email adress: eelco@deos.tudelft.nl
web site: http://rads.tudelft.nl/rads/data/authentication.shtml</td>
<td>free (online registration)</td>
</tr>
</tbody>
</table>

Related products and links

- Literature on RADS
- Modified Chelton and Wentz model
- Getorb

Last update: 2006-11-07
Modified Chelton-Wentz model

Product description

PRODUCT TYPE: software
DATA HANDLED: Sigma0 backscatter coefficient
SATELLITE CONTRACTOR
CONTENTS: Fortran code to compute wind speed from backscatter coefficient using Modified Chelton-Wentz model
APPLICATIONS USER: advanced
GEOGRAPHICAL SCALE: global
GEOGRAPHICAL COVERAGE: 82.0°
-180.0° ≤ θ ≤ 180.0°
-82.0°
TEMPORAL COVERAGE: - onGoing
REFERENCE SURFACE
PARAMETERS: ● wind_speed, m s⁻¹, CF
UPDATED: unknown
BY name: DEOS
email address: eelco@deos.tudelft.nl
web site: http://rads.tudelft.nl/rads/data/authentication.shtml

MENTION

COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>OS/Language</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>5 KB</td>
<td></td>
<td>name: DEOS/RADS</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email address: eelco@deos.tudelft.nl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site: http://rads.tudelft.nl/rads/data/authentication.shtml</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- RADS ERS-2
- Literature on RADS

Last update: 2006-09-29
RADS Geosat

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>INPUT DATA</th>
<th>OUTPUT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT TYPE</td>
<td>data</td>
<td>along-track</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATELLITE</th>
<th>AGENCIES</th>
<th>GRID TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geosat</td>
<td>US NAVY</td>
<td>cartesian</td>
</tr>
</tbody>
</table>

CONTENTS

Radar Altimeter Database System Geosat product provide via your web browser an image output of selected parameters, or an ASCII output that you can download on your local system; geophysical corrections are available so that you can compute your own sea level anomaly, with a temporal or geographic extraction. Datasets are selected in accordance with Geosat phase a and phase b.

APPLICATIONS

- mesoscale oceanography
- ocean circulation
- ocean variability
- calval
- meteorology
- ocean-atmosphere gas transfers

USER

advanced

GEOGRAPHICAL SCALE

global

GEOGRAPHICAL COVERAGE

<table>
<thead>
<tr>
<th>72.0°</th>
<th>-180.0°</th>
<th>180.0°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-72.0°</td>
</tr>
</tbody>
</table>

SPATIAL RESOLUTION

REFERENCE SURFACE

- TOPEX ellipsoid
- EGM96 geoid height
- GSFC00.1 mean sea surface height
- MSSCLS01 mean sea surface height
- GGM02C geoid height

TEMPORAL COVERAGE

1985-03-31 - 1989-12-30

QUALITY CONTROL

- sea_surface_height_above_sea_level, m, CF
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
| HTTP | 300 KB | GIF | name: DEOS/RADS
email adress: eelco@deos.tudelft.nl
web site: http://rads.tudelft.nl/rads/data/authentication.shtml | free (online registration) |
| HTTP | 5 MB (tar+gzip) | ASCII | name: DEOS/RADS
email adress: eelco@deos.tudelft.nl
web site: http://rads.tudelft.nl/rads/data/authentication.shtml | free (online registration) |

Related products and links

- [Literature on RADS](http://rads.tudelft.nl/rads/data/authentication.shtml)
- [Modified Chelton and Wentz model](http://rads.tudelft.nl/rads/data/authentication.shtml)
- [Getorb](http://rads.tudelft.nl/rads/data/authentication.shtml)

Last update: 2006-11-08
ERS RA Waveform Product (ERS.ALT.WAP)

Product description

PRODUCT TYPE data
INPUT DATA raw altimeter data
OUTPUT TYPE along-track

SATELLITE ERS-2
AGENCIES ESA
GRID TYPE

CONTENTS This is a global product giving values at regular intervals along the satellite track of surface range, satellite altitude, windspeed and significant wave height at nadir, and the altimeter waveform data. It is processed using the precise orbit and giving full geophysical corrections. The WAP product includes both data over ocean, ice and land. Since 22 June 2003 dataset are limited to ground station visibility.

APPLICATIONS ● re-tracking
● hydrology
● ice
● meteorology
● ocean-atmosphere gas transfers

USER expert

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE 82.0°
-180.0°
180.0°
-82.0°

SPATIAL RESOLUTION 20 Hz
REFERENCE SURFACE ● reference ellipsoid

TEMPORAL COVERAGE 1996-04-29 - 2003-06-22
QUALITY CONTROL http://earth.esa.int/pcs/ers/ra/reports/ecmwf/

PARAMETERS ● sea_surface_height_above_reference_ellipsoid, m, CF
● sea_surface_wave_significant_height, m, CF
● altimeter_waveform

UPDATED unknown
BY ESA

MENTION
COPYRIGHT
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 MB</td>
<td>Binary</td>
<td>name: ESA</td>
<td>Exabyte, on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress: eohelp@esa.int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site: http://earth.esa.int/dataproducts/</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- [Altimeter waveform product ALT.WAP compact user guide](http://earth.esa.int/dataproducts/)

Last update: 2006-10-19
Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>DATA DOCUMENTED</th>
<th>SATELLITE</th>
<th>AGENCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>document</td>
<td>ERS 1/2 waveform products</td>
<td>ERS-2</td>
<td>ESA</td>
</tr>
</tbody>
</table>

CONTENTS

This document is a user guide for the Altimeter Waveform Product (ALT.WAP) produced by the United Kingdom Processing and Archiving Facility (UK-PAF).

APPLICATIONS

- re-tracking
- hydrology
- ice
- meteorology
- ocean-atmosphere gas transfers

USER

expert

GEOGRAPHICAL SCALE

global

GEOGRAPHICAL COVERAGE

- 82.0°
- 180.0°
- -180.0°
- -82.0°

TEMPORAL COVERAGE

1996-04-29 - 2003-06-22

REFERENCE SURFACE

- reference ellipsoid

PARAMETERS

- sea_surface_height_above_reference_ellipsoid, m, CF
- altimeter_waveform

UPDATED

asNeeded

BY

name: ESA
e-mail address: eohelp@esa.int
web site: http://earth.esa.int/

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>210 KB</td>
<td>PDF</td>
<td>name: ESA</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e-mail address: eohelp@esa.int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site: http://earth.esa.int/</td>
<td></td>
</tr>
</tbody>
</table>
Related products and links

- ERS RA Waveform Product

Last update: 2006-10-23
WVFDR POSEIDON : Waveforms (extracted from SGDR)

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>INPUT DATA</th>
<th>OUTPUT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td>along-track</td>
</tr>
</tbody>
</table>

SATELLITE	AGENCIES
Topex/Poseidon	CNES
	NASA

<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WVFDR are POSEIDON Altimeter waveforms. They are 20 per second data with all samples. Quality flag are also given with the data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• retracking</td>
</tr>
<tr>
<td>• hydrology</td>
</tr>
<tr>
<td>• land</td>
</tr>
</tbody>
</table>

| USER |
| expert |

| GEOGRAPHICAL SCALE |
| global |

| GEOGRAPHICAL COVERAGE |
| 66.0° |
| -180.0° |
| 180° |
| -66.0° |

| SPATIAL RESOLUTION |
| 20 Hz |

| TEMPORAL COVERAGE |
| 1995-08-10 - 2002-02-07 |

| QUALITY CONTROL |
| parameter |
| altimeter_waveform |

| UPDATED | BY |
| unknown | AVISO |

| email adress | aviso@cls.fr |
| web site | http://www.aviso.oceanobs.com |

MENTION

COPYRIGHT Copyright CNES-CLS 1992-2006 for POSEIDON data

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-ROM(EDDIE)</td>
<td>1800000</td>
<td>binary 80</td>
<td>name : AVISO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress : aviso@cls.fr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site : http://www-aviso.cnrs.fr:8090/HTML/information/frames/general/products_uk.html</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>on request via catalogue</td>
</tr>
</tbody>
</table>

Related products and links

- user handbook for POSEIDON Waveforms product
- convert programs for waveforms POSEIDON products

Last update: 2006-08-31
User handbook for POSEIDON Waveforms product

Product description

PRODUCT TYPE document
DATA DOCUMENTED Topex/Poseidon waveform products

SATELLITE Topex/Poseidon
AGENCIRES

CONTENTS Aviso user handbook for POSEIDON Waveforms.

APPLICATIONS
- re-tracking
- hydrology
- land
- ocean circulation

GEOGRAPHICAL SCALE global
GEOGRAPHICAL COVERAGE
- 180.0° 180.0°
- 66.0° 66.0°

TEMPORAL COVERAGE - onGoing
REFERENCE SURFACE
- reference ellipsoid
- geoid

PARAMETERS
- altimeter_waveform

UPDATED asNeeded
BY name : AVISO
email adress : aviso@cls.fr
web site : http://www.aviso.oceanobs.com

MENTION

COPYRIGHT 1992-2004 CNES and NASA for TOPEX/POSEIDON data

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
| HTTP | 1500 KB| MSWord | name : AVISO
email adress : aviso@cls.fr
web site : http://www-aviso.cnes.fr:8090/HTML/information/frames/general/produits_uk.html | on request via catalogue |

Related products and links

- WVFDR POSEIDON : Waveforms (extracted from SGDR)
- convert programs for waveforms POSEIDON products

Last update: 2006-08-31
Convert programs for waveforms POSEIDON products

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>DATA HANDLED</th>
<th>SATELLITE</th>
<th>CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>software</td>
<td>AVISO VMS data</td>
<td>Topex/Poseidon</td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS
The programmes are subroutines written in fortran 77 to convert a VMS data record of a POSEIDON waveform file in 4 bytes long integers record. Each procedure includes: for header: 1) a subroutine RDPTR1 to convert a record for data: 2) a subroutine RDWVF1 to convert a record 3) a subroutine ENTIER1 to process one byte data 4) a subroutine ENTIER2 to process two bytes data 5) a subroutine ENTIER4 to process four bytes data

APPLICATIONS
- expert

GEOGRAPHICAL SCALE
- global

GEOGRAPHICAL COVERAGE
- 66.0° N
- 180.0° E
- 180.0° W
- 66.0° S

TEMPORAL COVERAGE
- onGoing

PARAMETERS
- sea_surface_height_above_sea_level, m, CF
- sea_surface_height_above_geoid, m, CF

UPDATED
unknown

BY
name: AVISO
email adress: aviso@cls.fr

MENTION
COPYRIGHT 1992-2001 CNES and NASA for TOPEX/POSEIDON data

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>OS/Language</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>40 KB</td>
<td>UNIX</td>
<td>name: AVISO</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress: aviso@cls.fr</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links

- WVFDR POSEIDON: Waveforms (extracted from SGDR)
- User handbook for POSEIDON Waveforms product

Last update: 2006-08-31
ERS-1/2 Ocean PRoducts 2

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>data</th>
<th>INPUT DATA</th>
<th>Sensor Data Records</th>
<th>OUTPUT TYPE</th>
<th>along-track</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATELLITE</td>
<td>ERS-1</td>
<td>AGENCIES</td>
<td>ESA</td>
<td>GRID TYPE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERS-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS

This product provides choices from ocean surface from the ERS radar altimeter along the satellite track. Wind speed modulus, wave height and sea surface elevation can then be retrieved (using precision orbits derived from the onboard laser retro-reflector). The datasets in the product include - over dated and geolocated 7 km wide cells (sensor footprint) - all sensor parameters, range and altitude elements used for geophysical quantities retrieval, all backscatter coefficient, wind speed, significant wave height elements computed, but also the ATSR/RW radiometer data (brightness temperature at 23.8 GHz and 36.5 GHz, water vapour content, liquid water content) used to correct altimeter measurements. Land cells are flagged. This product is available in 2 different versions. The level 1, called OPR1, is an intermediate product processed with the preliminary orbit, The level 2, called OPR2 is the final product processed with the precise orbit.

APPLICATIONS

- re-tracking
- hydrology
- land
- ice
- meteorology
- ocean-atmosphere gas transfers

USER

expert

GEOGRAPHICAL SCALE

global

GEOGRAPHICAL COVERAGE

-180.0° 180.0°

SPATIAL RESOLUTION

7 km

REFERENCE SURFACE

- reference ellipsoid

TEMPORAL COVERAGE

1991-08-01 - ongoing

QUALITY CONTROL
PARAMETERS
- sea_surface_height_above_reference_ellipsoid, m, CF
- sea_surface_wave_significant_height, m, CF
- altimeter_waveform

UPDATED cyclically BY name: CERSAT
email adress: fpaf@ifremer.fr
web site: http://www.ifremer.fr/cersat/fr/welcome.htm

MENTION

COPYRIGHT 1995 - ESA

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td></td>
<td>CCSDS</td>
<td>name: CERSAT</td>
<td>OPR data subsetting and download according to temporal and/or geographical criteria can be performed through the download form. This form is restricted to ESA-approved users (login and password must be requested to ESA): fill in the form - without forgetting your email - and submit. You will receive a request notification by e-mail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress:</td>
<td>orderdesk@ersus.esrinvas.esrin.esa.it</td>
</tr>
<tr>
<td></td>
<td>630 MB</td>
<td>CD-ROM</td>
<td>name: CERSAT</td>
<td>access to the data is restricted to ESA-approved users; authorization must be requested to ESA Order Desk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress:</td>
<td>orderdesk@ersus.esrinvas.esrin.esa.it</td>
</tr>
<tr>
<td></td>
<td>5 GB</td>
<td>Exabyte</td>
<td>name: CERSAT</td>
<td>access to the data is restricted to ESA-approved users; authorization must be requested to ESA Order Desk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress:</td>
<td>orderdesk@ersus.esrinvas.esrin.esa.it</td>
</tr>
</tbody>
</table>

Related products and links
- Altimeter & Microwave Radiometer ERS Products - User Manual
• OPR reading software

Last update: 2006-10-19
Altimeter & Microwave Radiometer ERS 1/2 Products - User Manual

Product description

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>DATA DOCUMENTED</th>
<th>CONTENTS</th>
<th>APPLICATIONS</th>
<th>USER</th>
<th>GEOGRAPHICAL SCALE</th>
<th>GEOGRAPHICAL COVERAGE</th>
<th>TEMPORAL COVERAGE</th>
<th>REFERENCE SURFACE</th>
<th>PARAMETERS</th>
<th>UPDATED</th>
<th>BY name</th>
<th>email address</th>
<th>web site</th>
</tr>
</thead>
</table>
| document | CERSAT OPR products | User Handbook for ERS 1/2 Ocean PRoducts. This manual provides an overview of ERS missions, comments on measurements accuracy and description of products formats and contents. One user manual is available per mission. | ● re-tracking
● hydrology
● land
● ice
● meteorology
● ocean-atmosphere gas transfers | expert | global | 82.0°
180.0°
180.0°
82.0° | - onGoing | ● reference ellipsoid | ● sea_surface_height_above_reference_ellipsoid, m, CF
● sea_surface_wave_significant_height, m, CF
● altimeter_waveform | asNeeded | CERSAT
fpaf@ifremer.fr
http://www.ifremer.fr/cersat/fr/welcome.htm |
Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>Format</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
</table>
email adress: fpaf@ifremer.fr
web site: http://www.ifremer.fr/cersat/en/welcome.htm | free |
| FTP | 2.99 MB| ERS-2: PDF V2.3, July 2001 | name: CERSAT
email adress: fpaf@ifremer.fr
web site: http://www.ifremer.fr/cersat/en/welcome.htm | free |

Related products and links

- [ERS-1/2 Ocean PRoducts 2](#)
- [OPR reading software](#)

Last update: 2006-11-08
Ocean PRoduct reading software

Product description

PRODUCT TYPE software
DATA HANDLED CERSAT Ocean PRoducts
SATELLITE ERS-1
ERS-2
CONTRACTOR ESA
CONTENTS Reading tools for OPR products.
APPLICATIONS USER advanced
GEOGRAPHICAL SCALE
GEOGRAPHICAL COVERAGE 82.0°
180.0° 180.0° 82.0°
TEMPORAL COVERAGE - onGoing
REFERENCE SURFACE
PARAMETERS
UPDATED unknown
BY name : CERSAT
email adress : fpaf@ifremer.fr
web site : http://www.ifremer.fr/cersat/fr/welcome.htm
MENTION
COPYRIGHT

Delivery

<table>
<thead>
<tr>
<th>Resource</th>
<th>Volume</th>
<th>OS/Language</th>
<th>Distributed by</th>
<th>Licence/conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>40 KB</td>
<td>C software</td>
<td>name : CERSAT</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress : fpaf@ifremer.fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site : http://www.ifremer.fr/cersat/fr/welcome.htm</td>
<td></td>
</tr>
<tr>
<td>FTP</td>
<td>34 KB</td>
<td>Fortran software</td>
<td>name : CERSAT</td>
<td>free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>email adress : fpaf@ifremer.fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>web site : http://www.ifremer.fr/cersat/fr/welcome.htm</td>
<td></td>
</tr>
</tbody>
</table>

Related products and links
5.2. Basic Radar Altimetry Toolbox

The Basic Radar Altimetry Toolbox is a brand-new tool designed to use radar altimetry data. It is able

- to read all altimetry data from official data centres, from ERS-1 and 2, Topex/Poseidon, Geosat Follow-on, Jason-1, Envisat, and the future Cryosat missions, from Sensor Geophysical Data Record to gridded merged data
- to do some processing and computations
- to visualise the results

It is available for Windows XP and 2000 and Linux Redhat EL4.

The Basic Radar Altimetry Toolbox is a joint project between ESA and CNES.

The Basic Radar Altimetry Toolbox can be divided in four main components:

1. Data reading (also called "ingestion")
2. Processing routine functions
3. Visualisation functions
4. Graphic User Interface (GUI)

The structure is onionskin: each layer using the previous ones, and being available to be used without the ones above (e.g. you use the processing routines, which read data with the data ingestion tools, without using either the visualisation or the GUI). The GUI is using the other layers, and is available for current versions of Windows (XP and 2000) and Linux (Redhat 9.0 and Mandrake 2006) operating systems.

The reading (or "ingestion") tools are a data dictionary, based on handbooks and data structures. They free the users of looking at each and every data format, byte by byte, to be able to read their products. The user can select several data files to work on them at the same time. They can be combined if they are of the same kind (same level, same mission or format). Once a dataset is chosen, the user is able to select a geographical area subset chosen by its minimum and maximum longitude and latitude, and/or a temporal subset by its start and end dates, and this for any type of data.

Processing functions are also available, to combine data fields (e.g. addition/subtraction needed to compute sea surface height from satellite altitude, altimetric range and corrections), select them (e.g. data editing to edit out-of-range values), etc. Such formulas can be saved for future use. The toolbox processed outputs are saved in NetCDF. All processing are made through command files where all the parameters are indicated (even when using the GUI, with which the files are automatically generated).

Once processed, the BRAT outputs can be visualised, whether one parameter against one other or against two others (typically, classical maps, including several cartographic projections). For all modes, title and comments can be written by the user. The user is able to choose a colour scale among a pre-defined set. A "do-your-own colour scale" tool is also provided. Plots can be saved in raster (gif, png, tif, jpg) format, or as gnuplot scripts.

The graphic user interface is an interactive interface, to provide the user with an easy-to-use tool. It enables to use all the above components without writing a single line of program or command files. In that frame, users are able to save the data context for future work: they are able to save their set preferences for future uses, under a user-defined name, the area, period, mission, colour scale, type of visualisation and the parameters combinations they might have defined.
6. Frequently Asked Questions

Here are some asked question about altimetry, its applications and the Basic Radar Altimetry Toolbox.

- Applications
- Altimetry
- Toolbox

For any question about specific data, please contact the data distribution center.
6.1. Applications Frequently Asked Questions

Does sea state influence the measurement of the satellite-sea surface range?
Sea state influence the measurement of the satellite-sea surface range because the altimeter is sensitive to sea surface elements perpendicular to the target line. These elements are more frequently in the wave trough than in the crest, so the mean height of these elements doesn't match the geometric mean height of all sea surface elements that make the mean sea level (electromagnetic bias). In this way, the altimetric-measured mean is shifted toward wave trough, and moreover if waves are high.

How to compute absolute dynamic topography / abolute sea surface heights
Dynamic topography (or absolute sea surface height) is the sea surface height with respect to geoid. It can be computed as the sum of sea level anomalies (i.e. the variable part of sea surface height) and a mean dynamic topography.

Absolute Dynamic Topography = Sea Level Anomalies + Mean Dynamic Topography

= Sea Surface Height - geoid

Can I have altimetric measurements near the coast? See [Coastal applications](#)
6.2. Altimetry Frequently Asked Questions

How altimetry works?
You can find an explanation of how altimetry works, in the "Altimetry" chapter of this website.

Does sea state influence the measurement of the satellite-sea surface range?
Sea state influence the measurement of the satellite-sea surface range because the altimeter is sensitive to sea surface elements perpendicular to the target line. These elements are more frequently in the wave trough than in the crest, so the mean height of these elements doesn't match the geometric mean height of all sea surface elements that make the mean sea level (electromagnetic bias). In this way, the altimetric-measured mean is shifted toward wave trough, and moreover if waves are high.

Are altimetry data available near Antarctica?
Using Topex/Poseidon or Jason-1 data near Antarctica is not easy, because of coasts and sea-ice. Moreover, Thier orbit passes between 66°S and 66°N (ERS-1 and 2 between 82°S and 82°N). However, ERS-1 & 2 and Envisat give data up to 82°S.

About the radiometer, I would like to know how brightness temperature is defined, and why 3 frequencies are used on some satellites.
The brightness temperature of a surface is equal to the product of the emissivity of this surface by its physical temperature. The radiation measured by the radiometer depends on the ocean surface emissivity, its physical temperature and water vapour and cloud absorption in the atmosphere. If you want to know precisely the atmospheric water vapour contents, you have to subtract surface and cloud contribution from the signal received by the radiometer. That's why several frequencies (3) are used, each one being more sensitive than the other to one of these contributions. By combining measurements done at each frequencies, you can extract the water vapour signal.
6.3. Basic Radar Altimetry Toolbox Frequently Asked Questions

Is it possible to do an ASCII dump of a data file using the toolbox?
Yes, by using the executable files
Under Windows: go in the C:/Program Files/brat-1.0.0/bin/ directory.
there you have a BratExportAscii.exe executable file. Do your parameter file indicating which file, record and field you wish to dump, the name of your output, and then, in a command window, type BratExportAscii.exe your_parameter_file.par
A ncdump.exe executable file is also provided, to dump netCDF Files (use: ncdump.exe your_data_file.nc > output_file.ascii)

Is it possible to compute geostrophic currents with the toolbox?
For now, derivatives functions have not be implemented in the toolbox
Glossary

A

ACC | Antarctic Circumpolar Current
Cold current encircling the Antarctic, driven by westerly winds between 40° and 50° South. The flow of the ACC is not checked by the continents. It thus links the Atlantic, Indian and Pacific Oceans.

ADT | >Absolute Dynamic Topography
Ocean topography with respect to the geoid.

AGC | Automatic Gain Control

Along-track | Along-track data are data chronologically ordered, following the satellite "ground track", i.e. the virtual track left by the radar beam on the ground.

Altimetry | Technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
Further information:
- How altimetry works
- Missions

ASCII | American Standard Code for Information Interchange

ASIC | Application Specific Integrated Circuit

ATSR | Along-Track Scanning Radiometer instrument measuring sea-surface temperatures (ESA)
Aviso
Archiving, Validation and Interpretation of Satellite Oceanographic data
French data distribution and archiving center for altimetry satellites and Doris data
Further information:
- [Website](#)

Bathymetry
Measurement of the ocean depths

Backscatter coefficient
The amplitude of the useful radar altimeter echo signal with respect to the emission amplitude gives the backscatter coefficient, sigma0. The backscatter coefficient can be related to wind speed.
Further information:
- [Altimetric measurements over the ocean](#)

Brown model
Over an ocean surface, the radar altimeter echo waveform has a characteristic shape that can be described analytically (the Brown model).
Further information:
- [Altimetric measurements over the ocean](#)

Calval
CALibration - VALidation

CCI
Centre de Contrôle des Instruments
Instruments control center (Jason-1)

CD Rom
Compact Disk Read Only Memory

Cersat
Centre ERS d'Archivage et de Traitement
French Processing and Archiving Facility
[Website](#)

CHAMP
CHAllenging Minisatellite Payload
[Website](#)

Clivar
Climate Variability and Predictability (WCRP)
[Website](#)
CLS Collecte, Localisation, Satellites

CMA Centre Multimissions Altimétrique
CNES altimetry multi-mission ground segment

CNES Centre National d'études Spatiales
French Space Agency

Cryosat ESA’s altimetry mission, to determine variations in the thickness of the Earth’s continental ice sheets and marine ice cover

CTRS Conventional Terrestrial Reference System

Cycle Satellite repetitivity, or repeat orbit

DAS Data Assimilation System

Data assimilation Use of data as initial input to a model and during computation to yield results that fit/approximate reality as closely as possible. For example, assimilation of readings from meteorology stations into weather forecasting models generates more reliable results. See Modelling

Data processing Antennas on the ground receive raw telemetry from satellites. These raw data must be processed by applying corrections and combining them with complementary data before they are usable. Data are processed to different levels:
- **Level 0**: raw telemetry
- **Level 1**: time-tagged data located and corrected for perturbing effects (level 1, 1.5 and 1b data fall into this category)
- **Level 2**: geophysical data (GDR-M) time-tagged, precisely located and corrected for environment effects. Data at this level are used by specialists with a close knowledge of their subject.
- **Level 3**: data ready for immediate use in applications, corrected and/or inter-calibrated.
Level 4: gridded or model output data. Depending on the mission, retracking is performed at level 1 or 2.

DEOS | Delft Institute for Earth-Oriented Space research
Website

DHU | Data Handling Unit

DIODE | Détermination Immédiate d’Orbite par DORIS Embarqué
DORIS onboard navigator, processing orbit in real time

Doppler effect (Doppler-Fizeau effect) | The pitch of a sound emitted by a moving object appears to be higher the faster it approaches, and lower the faster it moves away. A good analogy is a stream into which leaves are thrown at regular intervals. As we move upstream towards the source, leaves will flow past us more often. The faster we go, the more leaves we will see. Conversely, as we move downstream away from the source leaves will flow past less often-to the point where we would only see a single leaf when moving at the same speed as the current. High-pitched sounds have high frequencies, which means we "meet" the sound wave often-as if we were moving towards the source (or it was approaching us); low-pitched sounds have lower frequencies-as if we were moving away. The same principle applies to light rays, which shift towards the longer wavelengths as they move away, and towards the shorter wavelengths as they approach. (Adapted from Evry Schatzmann, Les Enfants d'Uranie) We can thus determine the velocity of a moving object emitting sound or light waves by measuring the shift between the transmitted and received frequencies. The DORIS system achieves precise orbit determination and location by measuring the Doppler shift in this way.
See DORIS
DORIS

Doppler Orbitography and Radiopositioning Integrated by Satellite
Precise orbit determination and location system using Doppler shift measurement techniques. A global network of orbitography beacons has been deployed. DORIS was developed by CNES, the French space agency, and is operated by CLS.
See also:
- Doppler effect
- Topex/Poseidon
- Jason-1
- Envisat

Dry tropospheric correction
Permanent gases in the atmosphere (oxygen, nitrogen) slow the radar pulse, generating an error on altimetry measurements of the order of 2.30 meters. The value of the correction is determined from atmospheric pressure data supplied by a meteorological model.
See also:
- Altimetry
- Environment corrections

DT
Delayed Time: data used to compute the product were processed using precise orbit

DUACS/td>
Data Unification and Altimeter Combination System (as part of the SSALTO processing system) (previously Developing Use of Altimetry for Climate Studies, in the EU project frame)

DVD Rom
Digital Versatile Disk Read Only Memory

Dynamic topography
Sea level driven by thermodynamic processes in the ocean

ECMWF
European Centre for Medium-range Weather Forecasting
Website
<table>
<thead>
<tr>
<th>Eddies</th>
<th>Hydrodynamic instabilities in the oceans that form in the wake of currents or are generated by winds. Eddies may persist for weeks or months, and may be tens to hundreds of kilometers across. They penetrate quite deep below the ocean surface and transport heat, salts and nutrients.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic Bias (EMB)</td>
<td>Perturbation of the altimeter radar pulse due to the fact that wave troughs reflect more energy than wave crests.</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño – Southern OscillationClimatic phenomenon occurring in the Tropics that involves transports of warm (El Niño) or cold (La Niña) water masses from west to east across the Pacific basin. This displacement of water is accompanied by a shift of atmospheric cells, and therefore of winds and monsoons across the Tropics. This oscillation, which has been occurring at irregular intervals for thousands of years, has a global effect on climate. The phenomenon is named "El Niño" (meaning the Christ Child or the Little Boy in Spanish) because warm waters often reach the coast of Peru around Christmas time, often severely disrupting local fisheries.</td>
</tr>
</tbody>
</table>
| **Environnement corrections** | The radar pulse used to measure altimetry is subjected to a number of disturbances as it passes through the atmosphere and when it is reflected by the sea surface. See also:
- Wet tropospheric correction
- Dry tropospheric correction
- Ionospheric correction
- Sea state bias*
- Electromagnetic bias
- Altimetry |
| **Envisat** | ENVIRONMENTAL SATellite Earth-observing satellite (ESA)
[Website](#) |
| ERM | Exact Repeat Mission (Geosat) Phase of the Geosat mission during which the satellite was put into a 17-day repeat orbit to study the oceans. See also: - Geosat - GM |
| ERS | European Remote Sensing satellites (ERS-1, ERS-2) Earth-observing satellites (ESA) |
| ESA | ESA’s Space Operations Centre Website |
| ESOC | European Space Agency Center Website |
| ESRIN | ESA Centre for Earth Observation Website |
| ESTEC | European Space Research and Technology Centre Website |
| EU | European Union |
| Eumetsat | European Organisation for the Exploitation of METeorological SATellites Website |
| F-DAC | French-Distribution and Archiving Centre (F-DAC) |
| F-PAC | French-Processing and Archiving Centre (F-PAC) |
| FDP | Fast Delivery Product |
| FM | Frequency Modulation Website |
Full-deramp The full-deramp technique concept consists in mixing this incoming signal with a replica of the transmitted chirp, slightly shifted in frequency. This circumvents problems of power necessary for the emitted pulse, and of the very short duration that would be needed to obtain requested accuracy. Further information:
- Full-Deramp Technique

Geoid The shape of the sea surface assuming a complete absence of perturbing forces (tides, wind, currents, etc.). The geoid reflects the Earth's gravitational field (it is an equipotential surface) and varies in height by as much as 100 meters over distances of several thousand kilometers due to uneven mass distribution within the planet's crust, mantle and core. Other, less pronounced, irregularities are also visible over smaller distances. These reflect the ocean's bottom topography.

Geophysical corrections The radar pulse used to measure altimetry is subjected to a number of disturbances as it passes through the atmosphere and when it is reflected by the sea surface.

GEOS 3 Geodynamics Experimental Ocean Satellite Altimetric satellite (NASA)

Geosat Geodetic & Oceanographic SATellite Altimetric satellite (US Navy)
Geostrophic circulation
Ocean circulation generated by the balance between the horizontal pressure gradient forces exerted by water masses and the effect of acceleration due to the Earth's rotation.

GFO
Geosat Follow-On
Altimetric Satellite (US Navy).
See also:
- Geosat

GM
Geodetic Mission (Geosat)
Phase of the GEOSAT mission during which the satellite’s orbit was designed to study the geoid.
See also:
- Geosat
- ERM
- Geoid

GOCE
Gravity field and steady-state Ocean Circulation
Website

GODAE
Global Ocean Data Assimilation Experiment
Website

GPS
Global positionning System

GPSDR
Global Positioning System Demonstration Receiver
One of three positioning systems on Topex/Poseidon that uses the GPS to determine the satellite’s position.

GRACE
Gravity Recovery and Climate Experiment
Web Site

Greenhouse effect
A good proportion of the heat penetrating the Earth's atmosphere is not reflected back into space but is "trapped" by clouds and water vapor. This heat is thus returned to the surface, maintaining an average temperature of 15°C on Earth. Without it, the temperature would be nearer -18°C. Increasing quantities of certain gases in the atmosphere-called greenhouse gases-such as carbon dioxide are thought to amplify this phenomenon, leading to an increase in temperature on the surface.
Ground Segment | The teams, hardware and software involved in controlling a satellite and in retrieving and processing its data.

Gulf Stream | Western boundary current of the subtropical gyre. The Gulf Stream is a strong current that transports warm waters from the Gulf of Mexico up the south coast of the United States to the Mid-Atlantic Ocean.

H | See Significant Wave Height

IAT | International Atomic Time

IDS | International DORIS Service
Website

IERS | International Earth Rotation Service
Website

IGDR | Interim Geophysical Data Record(s) or rapid-delivery products (48 hours after acquisition)
See also:
- GDR

IM | Instrument Module

Inverted Barometer (IB) | Correction applied to allow for atmospheric forcing of the ocean surface. The sea level is lower when atmospheric pressure is high, and higher when atmospheric pressure is low.
 Ionosphere | Layer of the upper atmosphere where electron and ionisation activity is particularly high. Electromagnetic waves are subjected to a number of perturbing effects as they pass through the ionosphere. See also: - Ionospheric correction

 Ionospheric correction | The altimeter radar signal is delayed as it travels through the ionosphere. Free electrons slow the radar pulse, causing an error on altimetry measurements of the order of 0 to 30 centimeters. The value of this correction is determined by combining range measurements acquired at two different frequencies (Topex and Poseidon-2 altimeters), as it is inversely proportional to the square of the frequency. For mono-frequency altimeters such as that used on the ERS satellites, this value is determined using a statistical model of the ionosphere. See also: - Wet tropospheric correction - Dry tropospheric correction - Environment corrections - Ionosphere - Altimetry

 ISRO | Indian Space Research organisation Website

 ITRF | International Terrestrial Reference Frame

 Jason-1 | Altimetric satellite (CNES/NASA), follow-on of Topex/Poseidon.

 JGM | Joint Gravity Model

 JMR | Jason-1 Microwave Radiometer

 JPL | Jet Propulsion Laboratory (NASA) Website
Kuroshio Current Western boundary current of the subtropical gyre. The Kuroshio Current is a strong current that transports warm waters from the China Sea and the Philippines up past Japan to the Mid-Pacific Ocean. It is the counterpart of the Gulf Stream in the North Atlantic.

La Niña See [ENSO](#)

LEO Low Earth Orbit

LOD Length-Of-Day

LRA Laser Retroreflector Array One of three positioning systems on Topex/Poseidon and Jason. The LRA uses a laser beam to determine the satellite's position by measuring the round-trip time between the satellite and Earth to calculate the range.

LRR Laser RetroReflector One of three positioning systems on ERS-1 and 2, Envisat and Cryosat. The LRR uses a laser beam to determine the satellite's position by measuring the round-trip time between the satellite and Earth to calculate the range.

MADT Maps of Absolute Dynamic Topography

MMS Multimission Modular Spacecraft

Modeling Modeling a phenomenon involves identifying its main characteristics and expressing them mathematically to better understand and, above all, predict how the phenomenon is likely to evolve.

MOE Medium Orbit Ephemeris
Mean Sea Level (MSL) The sea surface height averaged across all the oceans of the globe. An increase in the mean sea level is an indicator of a possible global warming.

MSLA Maps of Sea Level Anomalies

MSS Mean Sea Surface
Permanent component of the sea surface height. The mean sea surface comprises a geoid contribution (~100 m) and a permanent circulation contribution (~1 m).
See also:
- Geoid
- Permanent circulation

MWR MicroWave Radiometer (onboard Envisat)

MWS MicroWave Radiometer Sounder (onboard ERS-1 and 2)

N

nadir point de la sphère céleste représentatif de la direction verticale descendante, en un lieu donné (par opposition à zénith).

NASA National Aeronautics and Space Administration
Website

NAO North Atlantic Oscillation

NAVOCEANO NAVal OCEANographic Office
Website

Niña (La) See ENSO

Niño (El) See ENSO

NOAA National Oceanic and Atmospheric Administration
Website
<table>
<thead>
<tr>
<th>Noise</th>
<th>Statistical quantity used to estimate the inherent error on measurements induced by the instrument itself.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPOESS</td>
<td>National Polar-orbiting Operational Environmental Satellite System Website</td>
</tr>
</tbody>
</table>
| NRA | NASA Radar Altimeter
other name for the Topex altimeter |
| NRCS | Normalised Radar Cross Section |
| NRT | Near-Real Time: data using preliminary orbit (produced in 2 or 3 days) |

Ocean-atmosphere coupling
The ocean and atmosphere are mutually interdependent. In particular, water that evaporates from the ocean causes the atmosphere to become hotter and more humid. This phenomenon affects atmospheric movements (winds), which in turn affect ocean circulation and so on: the temperature of air masses in contact with the ocean is modified and, conversely, ocean currents are driven by dominant winds. These ocean-atmosphere interactions are a major factor in weather forecasting and a key element in our understanding of climate.

Orbitography
The study of satellite orbits. Very precise determination of a satellite's exact position is a key factor in altimetry. Depending on the satellite, two or three orbit determination systems are used.

OSDR
Operational Sensor Data Record(s) (Jason-1)

PAC
Processing and archiving centres (ESA)

PCU
Processing and Control Unit
<table>
<thead>
<tr>
<th>PDS</th>
<th>Payload Data Segment, responsible for exploiting the Envisat instrument data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent circulation</td>
<td>Steady state of ocean currents in an idealised unchanging atmospheric system.</td>
</tr>
<tr>
<td>POCC</td>
<td>Project Operation Control Center (Jason-1)</td>
</tr>
<tr>
<td>PO-DAAC</td>
<td>Physical Oceanography – Distributed Active Archive Center (NASA/JPL) Website</td>
</tr>
<tr>
<td>POD</td>
<td>Precise Orbit Determination</td>
</tr>
<tr>
<td>POE</td>
<td>Precise Orbit Ephemeris</td>
</tr>
</tbody>
</table>
| **Poseidon** | One of the two altimeters onboard Topex/Poseidon ([Cnes](#)); Poseidon-2 is Jason-1 altimeter
See also:
- [Topex/Poseidon](#) |
| **PRARE** | Precise Range and Range-rate Equipment (ERS-1 & 2) |
| **PRF** | Pulse Repetition Frequency |
| **PROTEUS** | *Plate-forme Réutilisable pour l'Observation, les Télécommunications et les Usages Scientifiques*
Minisatellite bus developed in France for Jason-1 and other missions. |
| **Radar Altimeter** | RA is the altimeter onboard ERS-1 and 2; RA-2 is onboard Envisat. |
Radiometer
Passive instrument that detects and measures radiant energy, usually in the microwave, infrared and near-infrared wavebands. Radiometers flown on altimetry satellites help us to measure water vapor and liquid water content in the atmosphere. These measurements are used to apply corrections to altimetry data. The radiometer’s antenna collects radiation reflected by the ocean. The amount measured depends on surface winds, ocean temperature, salinity, foam, absorption by water vapor and clouds, and other factors. To determine atmospheric water vapor content accurately, the surface and cloud contributions must be filtered out from the signal received by the radiometer. For this reason, different signal frequencies are used to increase sensitivity to each of these parameters. By combining measurements acquired at both frequencies, we can extract the water vapor signal.
See also:
- TMR
- JMR
- MWR
- MWS
- Altimetry
- Wet tropospheric correction

Range
the altimeter satellite-to-surface distance, deduced from the return echo time delay.
Further information:
- Altimetry: how it works

Reference ellipsoid
Arbitrary reference surface that is a raw approximation of the Earth’s shape, which is basically a sphere “flattened” at its poles. The length of one of the axes at the Equator is chosen so that the ellipsoid coincides at this latitude with the mean sea level. For example, the ellipsoid used by the Topex/Poseidon mission has a radius of 6378.1363 km and a flattening of 1/298.257.

Retracking
Retracking altimetry data is done by computing the departure of the waveform’s leading edge from the altimeter tracking gate and correcting the satellite range measurement (and surface elevation) accordingly.
Further information:
- Retracking
Radio Frequency (RF)

Radio Frequency Unit (RFU)

Root Mean Square (RMS)

Synthetic Aperture Radar (SAR)

Standard Formatted data Unit (SFDU)

Sensor Geophysical Data Record(s) (SGDR)

Sigma 0 or sigma-naught, or backscatter coefficient reflectivity coefficient of the radar wave on the surface.

Significant Wave Height (SWH)

Symbol \(H_s \) or \(H_{1/3} \).

The significant wave height is obtained by analyzing the shape and intensity of the altimeter radar beam reflected from the sea surface (radar echo). A long time delay in the return signal indicates that waves are high and, conversely, a short delay indicates that the sea surface is calm.

altimeter onboard Cryosat

Further information:
- [SIRAL](#)

Sea Level Anomalies or SSHA (Sea Surface Height Anomalies)

Difference between the observed sea surface height and the mean sea level. The SLA allows us to monitor ocean variability due to seasonal variations and climatic phenomena such as El Niño. Sea level variability (the standard deviation over time) is somewhere between 2-3 cm and 60 cm, depending on energy levels in different parts of the ocean. For altimetry data, these anomalies are not usually computed with respect to a seasonal mean, but to a multi-annual mean.

See also:
- [Sea surface height](#)
- [Mean sea surface](#)
- **El Niño/ENSO**

SLH | Sea Level Height

SLR | Satellite Laser Ranging

SSALT | Solid State radar ALTimeter
See also:
- **Poseidon**
- **Topex/Poseidon**

SSALTO | *Segment Sol multimissions d'ALTimétrie, d'Orbitographie et de localisation précise*
CNES multimission ground segment

SSB | Sea State Bias
Bias due to the sea-surface state, which consists of two components: electromagnetic bias and tracker bias.

SSDP | Segment Sol DORIS/Poseidon
DORIS/Poseidon ground segment

SSDT | Sea Surface Dynamic Topography

SSH | Sea Surface Height
Height measured by altimetry. Not the sea's depth (i.e., the distance from the surface to the ocean floor), but a height measured with respect to an arbitrary reference level, called the reference ellipsoid.

The sea surface height includes the geoid and the dynamic topography, which is the height due to ocean circulation. This dynamic topography includes a permanent component (permanent circulation) and a highly variable component driven by variations in currents, winds, tides, surface temperatures, and so on.

See also:
- **Reference ellipsoid**
- **Dynamic topography**
- **Geoid**
- **Mean sea surface**
- **Permanent circulation**
- **Tide**

SSHA | Sea Surface Height Anomalies see Sea Level Anomalies (SLA)
SSS	Sea Surface Salinity	
SST	Sea Surface TemperatureWater temperature at the ocean surface. The SST can be measured by satellite-based infrared radiometers. See also:	
 	- Radiometer	
 	- AVHRR	
 	- ATSR	

| **TDRS** | Tracking and Data Relay Satellite System |
| **TGS** | Topex Ground Segment |

| **Thermocline** | Zone between the colder water of the ocean depths and warmer surface water. Large temperature variations occur with depth in the thermocline zone. Near the surface, however, where water is always in motion, and in the ocean depths where there is no source of heat, the water temperature is fairly uniform. |

| **Thermohaline circulation** | Large-scale global ocean circulation driven by variations in the temperature and salinity of water masses. Cooled and saline waters downwell at high latitudes (off the coast of Norway and Greenland). Waters warmed in the Tropics upwell to the surface, where they are cooled, and so on. It is estimated that a single water molecule takes about 1,000 years to complete the circuit. |

| **Tide** | Variation in sea level due to the gravitational attraction of the Sun and Moon. Tides can be higher than seven meters in certain harbors. As well as ocean tides, Earth tides describe variations in the solid Earth caused by these gravitational forces. Further information: | |
| | - Ocean Tides |
| **TMR** | Topex Microwave Radiometer
Radiometer onboard Topex/Poseidon
See also:
- Altimetry
- Topex/Poseidon
- JMR |
| **Topex** | Ocean TOPography Experiment
One of the 2 altimeters (Nasa) onboard Topex/Poseidon.
See also:
- Topex/Poseidon
- Poseidon |
| **Topex/Poseidon** | Altimetric satellite (Nasa/Cnes) |
| **T/P** | Topex/Poseidon |
| **TRSR** | Turbo Rogue Space Receiver
One of three positioning systems on Jason-1 that uses the GPS to determine the satellite's position. |
| **UTC** | Universal Time Coordinated
Timekeeping system that relies on atomic clocks to provide accurate measurements of the second, while remaining coordinated with the Earth's rotation, which is much more irregular. To stay synchronised, UTC has to be adjusted every so often by adding one second to the day, called a leap second, usually between June 30 and July 1, or between December 31 and January 1. This is achieved by counting 23h59'59", 23h59'60" then 00h00'00". This correction means that the Sun is always at its zenith at noon exactly (accurate to the second). |
| **UCL** | University College London
Website |
| **Waveform** | The magnitude and shape of the radar altimetry return echoes |
Wet tropospheric correction

Water vapor in the atmosphere slows the radar pulse. This effect can generate mean errors of the order of 15 centimeters on altimetry measurements. The value of the correction applied is determined using measurements by radiometer on the satellite.

See also:
- Radiometer
- Altimetry
- Environment corrections

WITTEX

Water Inclination Topography and Technology Experiment
Website

WOCE

WOrld Ocean Circulation Experiment
Website

WSOA

Wide-Swath Ocean Altimeter

ZWD

Zenith Wet Delay